
 

 

 

 

 

 

 

RedCrab
PLUS

 
The Calculator 

 

Programmers Manual 
 

Version 4.32 

 
 
 

copyright © by Redchillicrab, Singapore  2009, 2010, 2011,2012 

 

 
  



Content 
 

 

1.1 Program Overview 

1.2  Programming 

1.3  Comments 

1.4  Identifiers 

1.5  Scope of Identifier 

1.6  String Constants 

1.7  Program Variables 

1.8  Number Expressions 

1.9  Boolean Expressions 

1.10  Expressions 

1.11  Multiple Line Statements 

 

 

2.1  Program 

2.2  Uses 

2.3 Define  

2.4 Let  

2.5  While do 

2.6  If Then 

2.7  Else 

2.8  Elseif 

2.9  Function  

2.10  Forward 

2.11  Call 

2.12  Result  

2.13  Next 

2.14 Index 

 

3.1  PHP Interface 

3.2  PHP Input 

3.3  PHP Output 

 

  



1.1 Program Overview 
 

RedCrab can open one or more source files (modules), each containing functions 

with series of statements or data. This manual describes the syntax rules and gives 

an overview of data access per text files and the program editor.   

 

 

 

1.2 Programming 
 

The RedCrab Calculator has its own simple program language implemented. It is 

easy to learn, so users without programming experience can write their own 

functions in a short time.     

 

According to the worksheet, RedCrab makes no distinction by keywords and 

system function, between uppercase and lowercase letters. Names of own defined 

functions and variables are case-sensitive.  

 

The program code ignores any extra spaces, tabs, linefeed and comments. When 

necessary, it uses the keyword end in association with the statement type to 

terminate a statement. Apart from this, it has no statement terminators such as 

semicolon. The end-of-line terminates a statement. For exceptions read the 

description about multi rows statements below.    

 

Example: let a = 12   

let b = 22 

 

 

You can write several statements in one line if they are separated by a colon. 

 

Example: let a = 123  :  let b = 22 

  

 

 



1.3 Comments 
 

For clarity and to simplify programmes, it is recommended that you document your 

codes by including comments. You can also use comment symbols during program 

development to disable statements without deleting them. You can indicate 

comments in two ways: 

 

- A comment can begin with the left parenthesis symbol following with the 

multiplication symbol (* and end with the symbols *). You cannot use the 

symbols to nest comments. 

 

- You can also use a double slash symbol  // . The comment terminates at the 

end of the line. 
 

 

 

1.4 Identifiers 
 

RedCrab programs can reference modules, functions, local and global variables 

and constants. With the exception of constants, each of these must have an 

identifier as a name. An identifier is a sequence of letters, digits and underscores. 

The first symbol must be a letter or underscore. 

 

 

 

1.5 Scope of Identifier 
 

Local variables must be defined within a function. They cannot be referenced by 

statements outside their function. 

 

Global variables must be defined outside a function. They can be referenced by all 

statements in the defined module. Other modules and worksheet can read them. 

 

Functions can be referenced by all statements in modules and worksheet.  

 

 

 



1.6 String Constants 
 

String constants are sequences of character enclosed within double quotes. The 

constant must be written in a single line. You can create longer strings by 

concatenating string constants with the Point (.) symbol. 

 

Example: let s = “Hallo ” 

  let t = s .“Welt” 

 

 

The variable t above contains: “Hello World” 

  

 

 

 1.7 Program Variables 
 

You must define a program variable before you can use this variable. You do this 

by assigning an identifier to the keyword define. The define statement allows 

optional assignment of a value. For more information, read the description about 

define below.    

 

 

 

1.8 Number Expressions 
 

A number expression consists of a number constant, variable, cells of a field, 

function that returns a number value or several of these, connected by one of the 

following arithmetic operators: 

 

* Multiplication 

/ Division 

Mod Modulo 

Div Integer Division 

+ Addition 

-   Subtraction 

 

 



  

1.9 Boolean Expressions 
 

A Boolean expression evaluates either TRUE or FALSE and has the following 

form: 

 

 expression  operator expression 

 

The expressions can be numeric or text strings. If a numeric expression is 

compared with a string containing a number, the value of the number is considered. 

If two strings are compared, they are always treated as strings, regardless of 

whether they contain text or numbers. Operator is one of the following relational 

operators: 

 

 Operator Operation 

 

 ==  Equal to 

< >   Not equal to 

>    Greater than 

>=  Greater than or equal 

<  Less than 

<=  Less than or equal   

 

 

Boolean expression can be compounded with the operators AND( & ) and OR( | ). 

 

Examples: (a >= b) & (c <= d) 

  (a == d) |  c 

 

 

 

1.10 Expressions 
 

For if and while statements, TRUE is any non-zero number and FALSE is zero. In 

these statements, you can use a number expression where a Boolean expression is 

called for. You can use a Boolean expression where a number expression would be 

expected, yielding 1 or 0. You can use a string expression that is a representation 

of a number anywhere that a number expression is allowed. 



 

 

 

1.11 Multiple Line Statements 
 

A field definition can be continued on the next line. The current line must end with 

a comma or a semicolon. 

 

A statement may be continued on to the next line if current line ends with 

backslash.  

 

A long number can be continued on to the next line if current line ends with a 

double backslash “\ \”. 

 

The following table shows some examples of multi-line statement: 

 

 
 

Statements 
 

Interpretation 

 
 

Let m = [1,2,3; 

  4,5,6]  

 

 

 

Let m = [1,2,3;4,5,6] 

 

 

Let m = [1,2,3,4, 

  5,6,7,8]  

 

 

 

Let m = [1,2,3,4,5,6,7,8] 

 

 

Let v \ 

  = 1 + 2 

 

 

 

Let v = 1 + 2 

 

Let v = 12345\\ 

  6789 

 

 

 

Let v = 123456789 

 

Let s = “hello ” \ 

 + “world” 

 

 

 

 

 

Let s = “hello ” + “world” 

 



   

 

2.1 Program 
 

A program file always starts with the key 

name can be specified. The program file is displayed in a tab with their file name, 

or a specified program name.

 

The syntax of the program

 
Program 

Program name  

 

The following example shows how

ColumnRowExtension   from the worksheet. The program file is qualified with the 

name of the register. 

 

 

More comfortable is the call

short program name is specified.

named the tab like the program name

 

 

 

 

A program file always starts with the key word program. Optionally, a program 

name can be specified. The program file is displayed in a tab with their file name, 

specified program name. 

program statement is: 

The following example shows how to call the function Col 

from the worksheet. The program file is qualified with the 

is the call of the function Col in the following example

name is specified. When loading the module from file

program name instead the file name. 

. Optionally, a program 

name can be specified. The program file is displayed in a tab with their file name, 

the function Col in module 

from the worksheet. The program file is qualified with the 

in the following example, where a 

from file, RedCrab 



2.2 Uses 
 

A uses clause lists modules used by the following program. The clause consists of 

the reserved word uses, followed by one or more comma delimited module names 

(file names). The uses statement must follow the program statement immediately. 

The syntax of the uses statement is: 

 
uses module1, module2 

 

 

 

2.3 Define  
 

The define statement declares the name of a variable and assign a value. If you do 

not assign a value, the variable is initialized with Zero. You cannot reference a 

variable before it has been declared by the define statement, or in the functions 

parameter list.  
 

The syntax of the define statement is: 

  
define Name  

define Name = Value 

 

The expression can be a value, a variable, a data field, a function that returns a 

value or several of these. The example below defined x as a data field with 20 rows 

and 8 columns. 

 

Example:  define x[] = [1..20] * [1..8] fill 0 

 

 



2.4 Let  
 

Let assigns an expression to a variable. The syntax of the Let statement is: 

  
 let variable = Ausdruck 

 

 

The expression consists of a constant, variable, cells of a field, function that returns 

a value or several of these. The value can be a simple number or Boolean value, a 

data field or a text string. 

 

Example: 

  
 let x = 12 

 let x = y 

 let x = (12 + y) * z 

 let x = sin(45) 

 let x = “hello” 

 let x[5] = 16 

 

The example above shows the last row assigned the value of 16 to index [5] of x. 

Index [5] is the sixth element of the field. The first element is index [0]. 

 

 

 

2.5 While do 
 

Use While when you want to repeat a set of statements. The syntax of a while do 

statement is: 

 
while expression do  

  statements.... 

end 

 

 

While repeats the statements between do and end so long as the expression 

condition remains True. If it is False, program control passes to the statement 

following the End statement. 

 

Example: 



 
Let i = 0 

While i < 100 do 

  Statement Sequence.... 

  Let i = i + 1 

End 

 

 

 

2.6 If Then 
 

The  if  controls conditional program branching. The statements between then and 

end is executed if the value of the expression is nonzero (TRUE). Otherwise, the 

statement block is skipped and the program continues with the statement following 

end. 

 

The syntax of the if statement is: 

 
if expression then  

statements.... 

end 

 

 

Example: 

 
if i < 100 then 

  Let x = 10 

End 

 

 

 

2.7 Else 
 

The else statement is an extension of if then statement. In the description of if 

statements above, the statement is ignored, if expression is null (FALSE). In this 

form of syntax, which uses the else statement, the statements between else and end 

are execute if expression is null (FALSE). 

 



The syntax of if then else statement is: 

  
if expression then  

  statements.... 

else 

  statements. 

end 

 

 

 

2.8 Elseif 
 

With elseif statement, additional conditions for program branching can be 

programmed. The expression, following elseif  is only evaluated if the preceding if 

and elseif expressions evaluate to zero (FALSE). If this expression has a nonzero 

value (TRUE) , then the following statements is executed until the next elseif or 

else statement. Then the program skips below the end statement. 

 

The syntax of the Elseif statement is: 

  
if expression then  

  statements.... 

elseif 

  statements. 

elseif 

  statements. 

else 

  statements. 

end 

 

 

 

2.9 Function  
 

The function statement defines a function. A function is a named block of 

statements. The function can be invoked from the worksheet and any module of 

your program. The function returns a single value or a data field; it can be invoked 

as an operand within a RedCrab expression. Otherwise, you must invoke it with 

the Call statement. 

 



The syntax of the Function statement is: 

  
function Name  (argument, argument......) 

     statements... 

end 

 

argument are the formal arguments to this function. You can reference the 

arguments without declaration by the define statement. 

 

Functions without arguments must have empty brackets behind the name. 

   

Example:  function Name() 

 

 

 

2.10 Forward 
 

The purpose of a forward declaration is to extend the scope of a function identifier 

to an earlier point in the source code. This allows other functions to call the 

forward-declared routine before it is actually defined. Besides letting you organize 

your code more flexibly, forward declarations are sometimes necessary for mutual 

recursions. 

 

The syntax of the Forward statement is: 

  
forward Name  

 

 

 

2.11 Call 
 

The call statement invokes a specified function. No result is expected.  

 

The syntax of the call statement is: 

 
Call FunctionName (argument, argument...) 

 

 

 



2.12 Result  
 

Result return values to the calling routine. The return value can be a number, 

Boolean or string constant, variable, cells of a field, function that returns a value or 

an expression.  

 

The syntax of the Result statement is: 

 
Result = Value 

 

 

 

2.13  Next 
 

Use Next to assign a data series to a field variable. You can assign single value or 

single row to the field row by row. The special feature is that Next needs no index. 

The field variables managed the index handling. Every execution of Next 

increments the index by one.  

 

Beispiel: define x = [1..20] 

 

  next x 

  next x = 23 

  next x = 5.6 

 

In the example above, Next x initialize the index of x. The next rows assign 23 to 

x[0] and 5.6 to x[1]. If you pass x as an argument to a function or another variable, 

the index will be pass on. 

 

Another feature of Next is the range control. If the index reaches the tail of the data 

field, Next extend the data field automatically. However, for big data fields, it is 

useful to define the data field large enough. The late extension of the field needs 

more processing power. For small data fields up to few thousand records, this is 

irrelevant. In any case, it is important that you define a variable with a minimum of 

one record and the number of columns you need.        

 

Next checks the data compatibility. The dimension of the assigned data field must 

be one less the field variable, or the same as one row of the field. The example 



above assigned a simple value to a one

below, we move a one-dimensional field to a row of a two

 

The numbers of columns can be different. The example below defined x as a two

dimensional field that contains 3 columns. In row 4 we assign a one

with the value of 99 to x. The remaining columns are filled with 0. In row 5 we 

assign a four-column field to 

  

Example: define x[] = [

  next x 

  next x = [

  next x = [

next x = [

 

 

   

Content of x:  

 

 

 

 

   

 

2.14 Index 

 

The function Index returns the current index of a field variable (the index of the 

last Next move). 

 

Example:  i = index(x)

 

above assigned a simple value to a one-dimensional data field. In the example 

dimensional field to a row of a two-dimensional field.

The numbers of columns can be different. The example below defined x as a two

dimensional field that contains 3 columns. In row 4 we assign a one

with the value of 99 to x. The remaining columns are filled with 0. In row 5 we 

umn field to x. Next cuts the fourth element. 

x[] = [1..6]*[1..3] fill 1 

x = [10,20,30] 

x = [99] 

x = [22,33,44,55] 

returns the current index of a field variable (the index of the 

(x) 

 

dimensional data field. In the example 

dimensional field. 

The numbers of columns can be different. The example below defined x as a two-

dimensional field that contains 3 columns. In row 4 we assign a one-column field 

with the value of 99 to x. The remaining columns are filled with 0. In row 5 we 

returns the current index of a field variable (the index of the 



3.1 PHP Interface 
 

RedCrab include an integrated PHP developer environment. For instruction about 

the PHP installation and configuration read the RedCrab
PLUS

 manual. This chapter 

describe the PHP programmers interface for data transfer between PHP and 

RedCrab. The interface uses the PHP standard Input / Output.  

 

 

 

3.2 PHP Input 

 

RedCrab sends data to PHP programs with the method POST to the standard input. 

The data includes one or more named arguments. The first argument is named 

func, it contains the name of the function which is called from RedCrab. The next 

arguments are the function parameters, they are named as arg1, arg2, arg3 and so 

on. 

 

In the following example RedCrab calls the function Add in the PHP program 

math with two parameters. 

 

Example:  

 

Function call in RedCrab:   

 
x = math.Add(a,b) 

 

 

Handle the call in PHP:    

 
$fname = $_POST[“func”];  // get the function name  

  $a1    = $_POST[“arg1”];  // get the first argument 

  $a2    = $_POST[“arg2”];  // get the second argument 

         $fname($a1,$a2);   // call the function Add() 

 

 

The example above calls a function with two numeric parameters. If you send 

arguments which contains data fields, RedCrab convert these into PHP format.  

 



The next example shows different accesses to arrays in arguments. The RedCrab 

interface handles one- and two dimensional data fields. 

  

Example: 

 

 Access to one-dimensional arrays 

 

1.) $data = $_POST["arg1"]; 

$x    = $data[1]; 

 $y    = $data[2]; 

 

2.) $x = $_POST["arg1"][1]; 

$y = $_POST["arg1"][2]; 

 

 

 Access to multi-dimensional arrays 
 

1.) $data = $_POST["arg1"]; 
$x    = $data[1][0]; 

 $y    = $data[2][0]; 

 

2.) $x = $_POST["arg1"][0][1]; 

$y = $_POST["arg1"][1][1]; 

 

 

 

3.3 PHP Output 
 

The PHP program sends data to RedCrab via echo statement. The following 

example shows the handling of a numeric value. 

 

Example: echo $val; 

 

 

If a function returns a data field (PHP array), the output string must be formatted 

equivalent to the RedCrab data file format. This means the interface transfers the 

data field row for row. The columns are delimited with commas; the semicolon 

delimits the rows. 

 



The PHP file RCFieldEcho.php contains a function which handles the output 

formatting. See the code below. You can copy or include this file in your program.      
 

<?PHP 

 

function RCFieldEcho($a) 

{ 

  $cnt = count($a); 

  $mcnt = count($a[0]); 

  for ($i = 0; $i < $cnt; $i++) 

  { 

    if ($mcnt > 1 ) 

    { 

      if ($i > 0) echo ';'; 

      RCFieldEcho($a[$i]); 

    } 

    else 

    { 

      if($i > 0) echo','; 

      echo $a[$i]; 

    } 

  } 

} 

 

?>  

  
 


