RedCrab’v®

The Calculator

Programmers Manual

Version 4.32

copyright © by Redchillicrab, Singapore 2009, 2010, 2011,2012

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3

Content

Program Overview
Programming
Comments
Identifiers

Scope of Identifier
String Constants
Program Variables
Number Expressions
Boolean Expressions
Expressions
Multiple Line Statements

Program
Uses
Define
Let
While do
If Then
Else
Elseif
Function
Forward
Call
Result
Next
Index

PHP Interface
PHP Input
PHP Output

1.1 Program Overview

RedCrab can open one or more source files (modules), each containing functions
with series of statements or data. This manual describes the syntax rules and gives
an overview of data access per text files and the program editor.

1.2 Programming

The RedCrab Calculator has its own simple program language implemented. It is
easy to learn, so users without programming experience can write their own
functions in a short time.

According to the worksheet, RedCrab makes no distinction by keywords and
system function, between uppercase and lowercase letters. Names of own defined
functions and variables are case-sensitive.

The program code ignores any extra spaces, tabs, linefeed and comments. When
necessary, it uses the keyword end in association with the statement type to
terminate a statement. Apart from this, it has no statement terminators such as
semicolon. The end-of-line terminates a statement. For exceptions read the
description about multi rows statements below.

Example: 1let a = 12
let b = 22

You can write several statements in one line if they are separated by a colon.

Example: 1let a = 123 : 1let b = 22

1.3 Comments

For clarity and to simplify programmes, it is recommended that you document your
codes by including comments. You can also use comment symbols during program
development to disable statements without deleting them. You can indicate
comments in two ways:

- A comment can begin with the left parenthesis symbol following with the
multiplication symbol (* and end with the symbols *). You cannot use the

symbols to nest comments.

- You can also use a double slash symbol //. The comment terminates at the
end of the line.

1.4 Identifiers

RedCrab programs can reference modules, functions, local and global variables
and constants. With the exception of constants, each of these must have an
identifier as a name. An identifier is a sequence of letters, digits and underscores.
The first symbol must be a letter or underscore.

1.5 Scope of Identifier

Local variables must be defined within a function. They cannot be referenced by
statements outside their function.

Global variables must be defined outside a function. They can be referenced by all
statements in the defined module. Other modules and worksheet can read them.

Functions can be referenced by all statements in modules and worksheet.

1.6 String Constants

String constants are sequences of character enclosed within double quotes. The
constant must be written in a single line. You can create longer strings by
concatenating string constants with the Point (.) symbol.

“Hallo ”
s JY“Welt”

Example: 1let s
let t

The variable t above contains: “Hello World”

1.7 Program Variables

You must define a program variable before you can use this variable. You do this
by assigning an identifier to the keyword define. The define statement allows
optional assignment of a value. For more information, read the description about
define below.

1.8 Number Expressions

A number expression consists of a number constant, variable, cells of a field,
function that returns a number value or several of these, connected by one of the
following arithmetic operators:

* Multiplication

/ Division

Mod Modulo

Div Integer Division
+ Addition

- Subtraction

1.9 Boolean Expressions

A Boolean expression evaluates either TRUE or FALSE and has the following
form:

expression operator expression

The expressions can be numeric or text strings. If a numeric expression is
compared with a string containing a number, the value of the number is considered.
If two strings are compared, they are always treated as strings, regardless of
whether they contain text or numbers. Operator is one of the following relational
operators:

Operator Operation

== Equal to

<> Not equal to

> Greater than

>= Greater than or equal
< Less than

<= Less than or equal

Boolean expression can be compounded with the operators AND(&) and OR(|).

Examples: (a >= b) & (c <= d)
== I

1.10 Expressions

For if and while statements, TRUE is any non-zero number and FALSE is zero. In
these statements, you can use a number expression where a Boolean expression is
called for. You can use a Boolean expression where a number expression would be
expected, yielding 1 or 0. You can use a string expression that is a representation
of a number anywhere that a number expression is allowed.

1.11 Multiple Line Statements

A field definition can be continued on the next line. The current line must end with

a comma or a semicolon.

A statement may be continued on to the next line if current line ends with
backslash.

A long number can be continued on to the next line if current line ends with a
double backslash “\\”.

The following table shows some examples of multi-line statement:

Statements Interpretation
Let m = [1,2,3;
4,5,6] Let [1,2,3;4,5,6]
Let m = [1,2,3,4,
5,6,7,8] Let [1,2,3,4,5,6,7,8]
Let v \
=1+ 2 Let 1+ 2
Let v = 12345\\
6789 Let 123456789
Let s = “hello ” \

+

“world”

Let

“hello ” + *“world”

2.1 Program

A program file always starts with the key word program. Optionally, a program
name can be specified. The program file is displayed in a tab with their file name,
or a specified program name.

The syntax of the program statement is:

Program
Program name

The following example shows how to call the function Col in module
ColumnRowEXxtension from the worksheet. The program file is qualified with the
name of the register.

| DateTime | ColumnRowExtention

1 program

X= ColumnRowExtension.Col (w,3) s

AR A A A A A AN A A AN A AR AN AN AN NN

3
4
2 File nam

7 Ty - B - r -
: ColumnRowExtension

1]

More comfortable is the call of the function Col in the following example, where a
short program name is specified. When loading the module from file, RedCrab
named the tab like the program name instead the file name.

DateTime | CREX

1 program CREI

X= CREX.Col (v, 3])

48]

T

T T= . s e T T o T
File name : ColumnRowExtensicon

2.2 Uses

A uses clause lists modules used by the following program. The clause consists of
the reserved word uses, followed by one or more comma delimited module names
(file names). The uses statement must follow the program statement immediately.
The syntax of the uses statement is:

uses modulel, module?2

2.3 Define

The define statement declares the name of a variable and assign a value. If you do
not assign a value, the variable is initialized with Zero. You cannot reference a
variable before it has been declared by the define statement, or in the functions
parameter list.

The syntax of the define statement is:

define Name
define Name = Value

The expression can be a value, a variable, a data field, a function that returns a
value or several of these. The example below defined x as a data field with 20 rows

and 8 columns.

Example: define x[] = [1..20] * [1..8] 0

2.4 Let

Let assigns an expression to a variable. The syntax of the Let statement is:

let variable = Ausdruck

The expression consists of a constant, variable, cells of a field, function that returns
a value or several of these. The value can be a simple number or Boolean value, a
data field or a text string.

Example:
let x = 12
let x =
let x = (12 + y) * z
let x = (45)
let x = “hello”
let x[5] = 16

The example above shows the last row assigned the value of 16 to index [5] of x.
Index [5] is the sixth element of the field. The first element is index [0].

2.5 While do

Use While when you want to repeat a set of statements. The syntax of a while do
statement is:

while expression do
statements....
end

While repeats the statements between do and end so long as the expression
condition remains True. If it is False, program control passes to the statement
following the End statement.

Example:

Let 1 = 0

While i < 100 do
Statement Sequence....
Let i =1 + 1

End

2.6 If Then

The if controls conditional program branching. The statements between then and
end is executed if the value of the expression is nonzero (TRUE). Otherwise, the
statement block is skipped and the program continues with the statement following
end.

The syntax of the if statement is:

if expression then
statements....
end

Example:

if i < 100 then
Let x = 10
End

2.7 Else

The else statement is an extension of if then statement. In the description of if
statements above, the statement is ignored, if expression is null (FALSE). In this
form of syntax, which uses the else statement, the statements between else and end
are execute if expression is null (FALSE).

The syntax of if then else statement is:

if expression then
statements....
else
statements.
end

2.8 Elseif

With elseif statement, additional conditions for program branching can be
programmed. The expression, following elseif is only evaluated if the preceding if
and elseif expressions evaluate to zero (FALSE). If this expression has a nonzero
value (TRUE) , then the following statements is executed until the next elseif or
else statement. Then the program skips below the end statement.

The syntax of the Elseif statement is:

if expression then
statements....
elseif
statements.
elseif
statements.
else
statements.
end

2.9 Function

The function statement defines a function. A function is a named block of
statements. The function can be invoked from the worksheet and any module of
your program. The function returns a single value or a data field; it can be invoked
as an operand within a RedCrab expression. Otherwise, you must invoke it with
the Call statement.

The syntax of the Function statement is:

function Name (argument, argument......)
statements. ..
end

argument are the formal arguments to this function. You can reference the
arguments without declaration by the define statement.

Functions without arguments must have empty brackets behind the name.

Example: function Name()

2.10 Forward

The purpose of a forward declaration is to extend the scope of a function identifier
to an earlier point in the source code. This allows other functions to call the
forward-declared routine before it is actually defined. Besides letting you organize
your code more flexibly, forward declarations are sometimes necessary for mutual
recursions.

The syntax of the Forward statement is:

forward Name

2.11 Call

The call statement invokes a specified function. No result is expected.

The syntax of the call statement is:

Call FunctionName (argument, argument...)

2.12 Result

Result return values to the calling routine. The return value can be a number,
Boolean or string constant, variable, cells of a field, function that returns a value or
an expression.

The syntax of the Result statement is:

Result = Value

2.13 Next

Use Next to assign a data series to a field variable. You can assign single value or
single row to the field row by row. The special feature is that Next needs no index.
The field variables managed the index handling. Every execution of Next
increments the index by one.

Beispiel: define x = [1..20]
next x
next x = 23
next x = 5.6

In the example above, Next x initialize the index of x. The next rows assign 23 to
x[0] and 5.6 to x[1]. If you pass x as an argument to a function or another variable,
the index will be pass on.

Another feature of Next is the range control. If the index reaches the tail of the data
field, Next extend the data field automatically. However, for big data fields, it is
useful to define the data field large enough. The late extension of the field needs
more processing power. For small data fields up to few thousand records, this is
irrelevant. In any case, it is important that you define a variable with a minimum of
one record and the number of columns you need.

Next checks the data compatibility. The dimension of the assigned data field must
be one less the field variable, or the same as one row of the field. The example

above assigned a simple value to a one-dimensional data field. In the example
below, we move a one-dimensional field to a row of a two-dimensional field.

The numbers of columns can be different. The example below defined x as a two-
dimensional field that contains 3 columns. In row 4 we assign a one-column field
with the value of 99 to x. The remaining columns are filled with 0. In row 5 we
assign a four-column field to x. Next cuts the fourth element.

Example: define x[] = [1..6]1*[1..3] 1
next x
next x = [10,20,30]
next x = [99]
next x = [22,33,44,55]

10 20 30

99 0 0

Content of x: 29 33 44
1 1 1

1 1 1

1 1 1

2.14Index

The function Index returns the current index of a field variable (the index of the
last Next move).

Example: i = (x)

3.1 PHP Interface

RedCrab include an integrated PHP developer environment. For instruction about
the PHP installation and configuration read the RedCrab™" manual. This chapter
describe the PHP programmers interface for data transfer between PHP and
RedCrab. The interface uses the PHP standard Input / Output.

3.2 PHP Input

RedCrab sends data to PHP programs with the method POST to the standard input.
The data includes one or more named arguments. The first argument is named
func, it contains the name of the function which is called from RedCrab. The next
arguments are the function parameters, they are named as argl, arg2, arg3 and so
on.

In the following example RedCrab calls the function Add in the PHP program
math with two parameters.

Example:
Function call in RedCrab:

x = math.Add(a, b)

Handle the call in PHP:
Sfname = $_POST[“func”]; / get the function name
Sal = $_POST[“argl”]; /I get the first argument
Sa2 = $_POST["”arg2”]; /I get the second argument
Sfname ($Sal, $a2); // call the function Add()

The example above calls a function with two numeric parameters. If you send
arguments which contains data fields, RedCrab convert these into PHP format.

The next example shows different accesses to arrays in arguments. The RedCrab
interface handles one- and two dimensional data fields.

Example:

Access to one-dimensional arrays

1.) $data = $_POST["argl"];
Sx = Sdatall];
Sy = S$datal2];

2.) $x = $_POST["argl"][1];

S_POST["argl"]1I[2];

Sy

Access to multi-dimensional arrays

1.) $data = $_POST["argl"];
$x = Sdatall]([0];
Sy = S$data[2][07];
2.) Sx = $_POST["argl"]1[0][11;

Sy $_POST["argl"][11[1];

3.3 PHP Output

The PHP program sends data to RedCrab via echo statement. The following
example shows the handling of a numeric value.

Example: echo $val;

If a function returns a data field (PHP array), the output string must be formatted
equivalent to the RedCrab data file format. This means the interface transfers the
data field row for row. The columns are delimited with commas; the semicolon
delimits the rows.

The PHP file RCFieldEcho.php contains a function which handles the output
formatting. See the code below. You can copy or include this file in your program.

<?PHP

function RCFieldEcho ($a)
{
Scnt = count($a);
Smcnt = count ($al[0]);
for ($1i = 0; $1i < Scnt; S$i++)
{
if (Smcnt > 1)
{
if ($i > 0) echo ';"';
RCFieldEcho ($al[$i]);
}
else
{
if($i > 0) echo',';
echo $al[$i];
}
}
}

?>

