
OPENPUFF V4.01 STEGANOGRAPHY & WATERMARKING

Data hiding and watermarking made easy, safe and free
EmbeddedSW © 2018

Send your suggestions, comments, bug reports, requests
to embedded@embeddedsw.net

OPENPUFF HOMEPAGE

 LEGAL REMARKS

 FEATURES: WHY IS THIS STEGANOGRAPHY TOOL DIFFERENT FROM THE OTHERS?

 FEATURES: PROGRAM ARCHITECTURE

 FEATURES: ADAPTIVE ENCODING AND STEGANALYSIS RESISTANCE

 FEATURES: MULTI-CRYPTOGRAPHY & DATA OBFUSCATION

 WHAT IS STEGANOGRAPHY?

 WHAT IS DENIABLE STEGANOGRAPHY?

 WHAT IS MARKING?

 SUPPORTED FORMATS IN DETAIL

 SUGGESTIONS FOR BETTER RESULTS

 OPTIONS: BITS SELECTION LEVEL

 STEP BY STEP DATA HIDING

 STEP BY STEP DATA UNHIDING

 STEP BY STEP MARK SETTING

 STEP BY STEP MARK CHECKING

 STEP BY STEP DATA & MARK ERASING

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 1

http://embeddedsw.net/OpenPuff_Steganography_Home.html
mailto:embedded@embeddedsw.net

 LEGAL REMARKS

Remember: this program was not written for illegal use. Usage of this program that may violate your
country's laws is severely forbidden. The author declines all responsibilities for improper use of this
program.

No patented code or format has been added to this program.

THIS IS A FREEWARE SOFTWARE

This software is released under LGPL 3.0

You’re free to copy, distribute, remix and make commercial use of this software under the following
conditions:
 You have to cite the author (and copyright owner): WWW.EMBEDDEDSW.NET
 You have to provide a link to the author’s Homepage: WWW.EMBEDDEDSW.NET/OPENPUFF.HTML

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 2

http://www.embeddedsw.net/openpuff.html
http://www.gnu.org/licenses/lgpl.html
http://www.embeddedsw.net/

 Features: why is this steganography tool different from the others?

OpenPuff is a professional steganography tool, with unique features you won’t find among any other
free or commercial software. OpenPuff is 100% free and suitable for highly sensitive data covert
transmission.
WHAT IS STEGANOGRAPHY?

Let’s take a look at its features

 [CARRIERS CHAINS]
Data is split among many carriers. Only the correct carrier sequence enables unhiding. Moreover,
up to 256Mb can be hidden, if you have enough carriers at disposal. Last carrier will be filled with
random bits in order to make it undistinguishable from others.

 [SUPPORTED FORMATS]
Images, audios, videos, flash, adobe.
SUPPORTED FORMATS IN DETAIL

 [LAYERS OF SECURITY]
Data, before carrier injection, is encrypted (1), scrambled (2), whitened (3) and encoded (4).
FEATURES: PROGRAM ARCHITECTURE

 [LAYER 1 - MODERN MULTI-CRIPTOGRAPHY]
A set of 16 modern 256bit open-source cryptography algorithms has been joined into a double-
password multi-cryptography algorithm (256bit+256bit).

 [LAYER 2 - CSPRNG BASED SCRAMBLING]
Encrypted data is always scrambled to break any remaining stream pattern. A new
cryptographically secure pseudo random number generator (CSPRNG) is seeded with a third
password (256bit) and data is globally shuffled with random indexes.

 [LAYER 3 - CSPRNG BASED WHITENING]
Scrambled data is always mixed with a high amount of noise, taken from an independent
CSPRNG seeded with hardware entropy.
OPTIONS: BITS SELECTION LEVEL

 [LAYER 4 - ADAPTIVE NON-LINEAR ENCODING]
Whitened data is always encoded using a non-linear function that takes also original carrier bits
as input. Modified carriers will need much less change and deceive many steganalysis tests
(e.g.: 2 test).
FEATURES: ADAPTIVE ENCODING AND STEGANALYSIS RESISTANCE

 [EXTRA SECURITY - DENIABLE STEGANOGRAPHY]
Top secret data can be protected using less secret data as a decoy.
WHAT IS DENIABLE STEGANOGRAPHY?

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 3

 [SOURCE CODE]
This program relies on the LIBOBFUSCATE system-independent open-source library. Users and
developers are absolutely free to link to the core library (100% of the cryptography & obfuscation
code), read it and modify it.

You’re kindly asked to send me any libObfuscate porting/upgrade/customizing/derived sw, in order
to analyze them and add them to the project homepage. A central updated official repository will
avoid sparseness and unreachability of the project derived code.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 4

http://embeddedsw.net/libObfuscate_Cryptography_Home.html

 FEATURES: PROGRAM ARCHITECTURE

A high-level global description of OpenPuff’s architecture
 data is split among carriers
 each carrier is associated to a random initialization vector array (IVS)
 text passwords (32 characters = 256bit) are associated (KDF4) to hexadecimal passwords
 data is first encrypted with two 256bit KEYS (A) (B), using multi-cryptography
 encrypted data is then scrambled, with a third key (C), to break any remaining stream pattern
 scrambled data is then whitened (= mixed with random noise)
 whitened data is then encoded using a function that takes also original carrier bits as input
 modified carriers receive the processed stream

…

…

…

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 5

Random Engine (CSPRNG)

IVs [16x] 2/N (128bit)

IVs [16x] 1/N (128bit)

IVs [16x] N/N (128bit)

Data 1/N Data N/N

 A B Encryption (CSPRNG)

 C Scrambling (CSPRNG)

Carrier 1/N

ModCarrier 1/N ModCarrier 2/N

Carrier N/N

ModCarrier N/N

Data 2/N

Whitening (CSPRNG)

Carrier 2/N

 A Pssw
KDF

4

Adaptive Encoding

Carrier Engine

 B Pssw

 C Pssw

http://en.wikipedia.org/wiki/Key_(cryptography)
http://en.wikipedia.org/wiki/KDF
http://en.wikipedia.org/wiki/Initialization_vector

Cryptography is a multi step process
 each carrier gets an independent setup

CarrierSetupi = { IVsi , CSPRNGi , Keysi }
 each cipher gets an independent setup

Cipherj = { IVj , Keyj }
 each data block is processed with a different cipher, selected using the CSPRNG

Carrieri CryptedBlockk = r  Rand-i () ; Cipherr (IVr , Keyr , Carrieri Blockk)

 …

 …

Modified carriers receive
 an encrypted copy of (AES) its initialization vector array

CryptedIVsn = Crypt (IVsn , CryptedIVsn-1)
 processed data

…

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 6

CSPRNG-i

Carrieri (128bit IN)
Block 1/N

Carrieri (128bit IN)
Block 2/N

Carrieri (128bit IN)
Block N/N

Carrieri (128bit OUT)
AES(Block1/N)

Carrieri (128bit OUT)
MARS(BlockN/N)

Carrieri (128bit OUT)
RC6(Block2/N)

RAND-i () = MARS

IVs [16x] 1/N

AES

ModCarrier 1/N

Carrier Engine

IVs [16x] 2/N IVs [16x] N/N)

AES AES

ModCarrier 2/N ModCarrier N/N

RAND-i () = AES RAND-i () = RC6IVsi [16x]
(128bit)

OpenPuff implements a cryptographically secure pseudo random number generator (CSPRNG) using
AES-256 encryption. Block-based secure algorithms running in Counter-Mode (CTR) behave, by
construction, as a random engine.

A good hardware source of starting entropy has been provided, not depending on any third-party
library or system-API. Threads are always scheduled by the OS in an unpredictable sequence (due to
an unavoidable lack of timing accuracy), easily allowing to get a significant amount of EXECUTION RACE
CONDITION . N threads run in parallel, incrementing and decrementing shared values that, after a while,
turn into random values.

…

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 7

CTR (128bit)Entropy

Key (256bit)

Random

Random Engine (CSPRNG)
128bit Blocks - 256bit Key - CTR

 AES

Thread 1/N Thread 2/N Thread N/N

Shared values

Entropy Random Engine (CSPRNG)

http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/CSPRNG

Testing has been performed on the statistical resistance of the CSPRNG and the multi-wrapper, using
the well known PSEUDORANDOM NUMBER SEQUENCE TEST PROGRAM - ENT .

Provided results are taken from 64Kb, 128Kb, ... 256Mb samples:

 bit entropy test resistance:
>7.9999xx / 8.000000 reference: >7.9

 compression test resistance (size reduction after compression):
0% reference: <1%

 chi-squared distribution test resistance:
20% < deviazione < 80% reference: >10%, <90%

 mean value test resistance:
127.4x / 127.5 reference: >127, <128

 Monte Carlo test resistance:
errore < 0.01% reference: < 1%

 serial correlation test resistance:
< 0.0001 reference: < 0.01

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 8

http://www.fourmilab.ch/random/

 FEATURES: ADAPTIVE ENCODING AND STEGANALYSIS RESISTANCE

Security, performance and steganalysis resistance are conflicting trade-offs.

[Security vs. Performance]: Whitening
 Pro: ensures higher data security
 Pro: allows deniable steganography
 Con1: requires a lot of extra carrier bits

[Security vs. Steganalysis]: Cryptography + Whitening
 Pro: ensure higher data security
 Con2: their random-like statistical response marks carriers as more “suspicious”

Should we then be concerned about OpenPuff’s STEGANALYSIS RESISTANCE ? Data, before carrier
injection, is encrypted (1), scrambled (2) and whitened (3). Do these 3 steps turn a small amount of
hidden data into a big chunk of suspicious data?

A new security layer has been added at the bottom of the data process. Whitened data is always
encoded using a non-linear function that takes also original carrier bits as input. Modified carriers will
need much less change (Con1) and, lowering their random-like statistical response, deceive many
steganalysis tests (Con2).

"DEFENDING AGAINST STATISTICAL STEGANALYSIS " (Niels Provos)

"CONSTRUCTING GOOD COVERING CODES FOR APPLICATIONS IN STEGANOGRAPHY " (Jessica Fridrich)

The provided coding implementation is a novel unpublished function (built from scratch) that ensures
 output password dependence
 high (50%) embedding efficiency
 low (<20%) change rate

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 9

ModCarrierCarrier

Encrypt | Scrambling | Whitening

Encoding

Data

0 111

0 110

0 101

0 010

0 111

http://www.ws.binghamton.edu/fridrich/Research/stegocovsurveyOct07.pdf
http://www.citi.umich.edu/u/provos/papers/defending.ps
http://en.wikipedia.org/wiki/Steganalysis

 FEATURES: MULTI-CRYPTOGRAPHY & DATA OBFUSCATION

FAQ 1: Why didn’t you simply implement a standard AES-256 or RSA-1024?

Modern open-source cryptography
 has been thoroughly investigated and reviewed by the scientific community
 it’s widely accepted as the safest way to secure your data
 fulfills almost every standard need of security

OpenPuff doesn’t support any CONSPIRACY THEORY against our privacy (SECRET CRACKING BACKDOORS ,
intentionally weak cryptography designs, …). There’s really no reason not to trust standard modern
publicly available cryptography (although some old ciphers have been already CRACKED).

Steganography users, however, are very likely to be hiding very sensitive data, with an unusually high
need of security. Their secrets need to go through a deep process of data OBFUSCATION in order to be
able to longer survive forensic investigation and hardware aided brute force attacks.

FAQ 2: Is multi-cryptography similar to multiple-encryption?

Multi-cryptography is something really different from MULTIPLE-ENCRYPTION (encrypting more than once).
There’s really no common agreement about multiple-encryption’s reliability. It’s thought to be:
 BETTER than single encryption
 WEAK as the weakest cipher in the encryption queue/process
 worse than single encryption

OpenPuff supports the last thesis (worse) and never encrypts already encrypted data.

FAQ 3: Is multi-cryptography similar to random/polymorpihc-cryptography?

Random-cryptography, a.k.a. POLYMORPHIC CRYPTOGRAPHY , is a well-known SNAKE-OIL CRYPTOGRAPHY .
Multi-cryptography is something completely different and never aims to build some better, random or
on-the-fly cipher.

OpenPuff only relies on stable modern open-source cryptography.

FEATURES: PROGRAM ARCHITECTURE

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 10

http://www.schneier.com/blog/archives/2008/10/new_attack_agai.html
http://www.pmc-ciphers.com/eng/content/TurboCrypt/MainPage.html
http://www.marenglenbiba.net/seceng/Lesson10.pdf
http://www.ciphersbyritter.com/NEWS6/CASCADE.HTM
http://en.wikipedia.org/wiki/Multiple_encryption
http://en.wikipedia.org/wiki/Obfuscation
http://en.wikipedia.org/wiki/EFF_DES_cracker
http://en.wikipedia.org/wiki/Backdoor_(computing)
http://en.wikipedia.org/wiki/Conspiracy_theory

 WHAT IS STEGANOGRAPHY?

It's a SMART WAY to hide data into other files, called carriers. Modified carriers will look like the original
ones, without perceptible changes. Best carriers are videos, images and audio files, since everybody
can send/receive/download them without suspects.

The steganography process is highly selective and adaptive, with a minimum payload for each carrier.
Carriers with a maximum hidden data amount less than the minimum payload will be discarded.
 +256B  IV
 +16B  a cryptography block
FEATURES: PROGRAM ARCHITECTURE

There’s no CARRIER bytes threshold during the marking process.
WHAT IS MARKING?

WHY SHOULD I NEED THIS TECHNIQUE?

You don't need this technique if your data
 can be explicitly sent or stored in altered suspicious format.

You may be interested in this technique if your data
 needs hiding without turning into suspicious format.
 have to be easily accessible by everyone, but retrievable only by people acquainted with your

secret intent.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 11

http://en.wikipedia.org/wiki/Steganography

 WHAT IS DENIABLE STEGANOGRAPHY?

DENIABLE ENCRYPTION/STEGANOGRAPHY is a decoy based technique that allows you to convincingly deny
the fact that you’re hiding sensitive data, even if attackers are able to state that you’re hiding some
data. You only have to provide some expendable decoy data that you would plausibly want to keep
confidential. It will be revealed to the attacker, claiming that this is all there is.

How is it possible? Encrypted and scrambled data, before carrier injection, is whitened (FEATURES:
PROGRAM ARCHITECTURE) with a high amount of noise (OPTIONS: BITS SELECTION LEVEL). Decoy data can
replace some of this noise without loosing final properties of CRYPTANALYSIS RESISTANCE .

Sensitive data and decoy data are encrypted using different passwords. You have to choose two
different sets of different passwords.

Example:

Sensibile data: Password (A) “FirstDataPssw1”
Password (B) “SecondDataPssw2”
Password (C) “AnotherDataPssw3”

(A ∩ B) 70%, (A ∩ C) 67%, (B ∩ C) 68%, HAMMING DISTANCE ≥ 25%
 ≠ ≠ ≠

Decoy data: Password (A’) “FirstDecoyPssw1”
Password (B’) “SecondDecoyPssw2”
Password (C’) “AnotherDecoyPssw3”

(A’ ∩ B’) 72%, (A’ ∩ C’) 60%, (B’ ∩ C’) 70%, HAMMING DISTANCE ≥ 25%

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 12

N
O
R
M
A
L

A
T
T
A
C
K

Whitening
Data

Noise Data

Data

ise
Whitening

SecretData

SecretPasswords

DecoyData
DecoyPasswords

No

Hide
DecoyPasswords DecoyData

Unhide

Unhide
SecretData

SecretPasswords

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Deniable_encryption

Each password has to be different (at bit level) and at least 8 characters long.

Example: “DataPssw1” (A) “DataPssw2” (B) “DataPssw3” (C)

(A) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110001
(B) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110010
(C) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110011

(A ∩ B) 98%, (A ∩ C) 99%, (B ∩ C) 99%, HAMMING DISTANCE < 25% KO

Example: “FirstDataPssw1” (A) “SecondDataPssw2” (B) “AnotherDataPssw3” (C)

(A) 01000110 01101001 01110010 01110011 01110100 01000100 01100001 01110100 01100001 …
(B) 01010011 01100101 01100011 01101111 01101110 01100100 01000100 01100001 01110100 …
(C) 01000001 01101110 01101111 01110100 01101000 01100101 01110010 01000100 01100001 …

(A ∩ B) 70%, (A ∩ C) 67%, (B ∩ C) 68%, HAMMING DISTANCE ≥ 25% OK

You will be asked for
 two different sets of different passwords
 a stream of sensitive data
 a stream of decoy data compatible (by size) with sensitive data

∑ k  { 1, N-1 } used_carrier_bytes(carrk) < Sizeof(Decoy) ≤ ∑ k  { 1, N } used_carrier_bytes(carrk)

Example:

Carriers Carrier bytes SensitiveData DecoyData
+Carr (1/N) 32 X Used

… 2688 X Used
+Carr (N-1/N) 48 X Used
+Carr (N/N) 64 Not used

Total = 2832 Total = 2795 2720 < Size ≤ 2768

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 13

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Hamming_distance

 WHAT IS MARKING?

Marking is here stated as the action of signing a file with your copyright mark (best known as
WATERMARKING). This program does it in a steganographic way, applied to videos, images and audio
files. Your copyright mark will be invisible, but accessible by everyone (using this program), since it
won't be password protected.

WHY SHOULD I NEED THIS TECHNIQUE?

You don't need this technique if your copyright mark
 needs to be clearly visible
 has to be independent from graphic/audio data, therefore capable of surviving editing operations

You may be interested in this technique if your copyright mark
 needs to be invisible
 has to be dependent from graphic/audio data, therefore incapable of surviving editing operations
 has to be accessible by everyone (using this program)

A possible usage of this technique could be: insertion of an invisible copyright mark into registered files
that have to be publicly shared. Illegally manipulated copies will maybe look like original ones, but will
partially/totally loose the invisible copyright mark.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 14

http://en.wikipedia.org/wiki/Digital_watermarking

 SUPPORTED FORMATS IN DETAIL

 Images: BMP , JPG , PCX , PNG , TGA
 Audios: AIFF , MP3 , NEXT/SUN , WAV
 Videos: 3GP , FLV , MP4 , MPG , SWF , VOB
 Flash-Adobe: PDF

Carriers will keep their format
 [in: 32 bits per plane TGA, out: 32 bits per plane TGA]
 [in: Stereo WAV, out: Stereo WAV]
 [in: RGB+Alpha BMP, out: RGB+Alpha BMP]
etc…

Additional tags/chunks and extra bytes will be entirely copied unchanged.
Don't perform any further operation to modified carriers. Their carrier bits would very probably be
altered.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 15

 BMP IMAGES (MICROSOFT)

 Known extensions: *.BMP, *.DIB
 24/32 bits per pixel
 Mono/RGB/RGB+Alpha
 Up to version 5

BACK

 JPG IMAGES (JOINT PHOTOGRAPHIC EXPERTS GROUP)

 Known extensions: *.JPG, *.JPE, *.JPEG, *.JFIF
 8 bits per plane
 1-4 planes per pixel, i.e.: Mono/RGB/YCbCr/YCbCrK/CMY/CMYK
 Baseline lossy DCT-jfif with Huffman compression
 h2v2 (4:4), h1v2 (4:2), h2v1 (4:2), h1v1 (4:1) planes independent alignment

BACK

 PCX IMAGES (ZSOFT)

 Known extensions: *.PCX
 24 bits per pixel Mono/RGB
 Compressed/Uncompressed

BACK

 PNG IMAGES (PORTABLE NETWORK GRAPHICS)

 Known extensions: *.PNG
 8/16 bits per plan
 Mono/RGB/Mono+Alpha/RGB+Alpha
 Interlaced/Linear

BACK

 TGA IMAGES (TARGA TRUEVISION)

 Known extensions: *.TGA, *.VDA, *.ICB, *.VST
 Mono-8 bits per pixel or RGB/RGB+Alpha-24/32 bits per pixel
 Compressed/Uncompressed

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 16

 AIFF AUDIOS (AUDIO INTERCHANGE FILE FORMAT)

 Known extensions: *.AIF, *.AIFF
 16 bits per sample
 Mono/Stereo/Multi channels
 Linear, uncompressed

BACK

 MP3 AUDIOS (FRAUNHOFER INSTITUT)

 Known extensions: *.MP3
 MPG 1/MPG 2/MPG 2.5 Layer III
 Fixed/Variable Bitrate
 Mono/Dual Channel/Joint Stereo/Stereo
 ID Tagged

BACK

 NEXT/SUN AUDIOS (SUN & NEXT)

 Known extensions: *.AU, *.SND
 16 bits per sample
 Mono/Stereo/Multi channels
 Linear, uncompressed

BACK

 WAV AUDIOS (MICROSOFT)

 Known extensions: *.WAV, *.WAVE
 16 bits per sample
 Mono/Stereo/Multi channels
 PCM, uncompressed

BACK

 3GP VIDEOS (3RD GENERATION PARTNERSHIP PROGRAM)

 Known extensions: *.3GP, *.3GPP, *.3G2, *.3GP2
 Up to version 10
 Codec independent support
 Up to 32 tracks

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 17

 ADOBE FLV VIDEOS (FLASH VIDEO)

 Known extensions: *.FLV, *.F4V, *.F4P, *.F4A, *.F4B
 Up to version 10
 Codec independent support
 Audio MP3 tracks analysis

BACK

 MP4 VIDEOS (MOTION PICTURE EXPERTS GROUP)

 Known extensions: *.MP4, *.MPG4, *.MPEG4, *.M4A, *.M4V, *.MP4A, *.MP4V
 Up to specification ISO/IEC 14496-12:2008
 Codec independent support
 Up to 32 tracks

BACK

 MPG VIDEOS (MOTION PICTURE EXPERTS GROUP)

 Known extensions: *.MPG, *.MPEG, *.MPA, *.MPV, *.MP1, *.MPG1, *.M1A, *.M1V, *.MP1A,
*.MP1V, *.MP2, *.MPG2, *.M2A, *.M2V, *.MP2A, *.MP2V

 Mpeg I Systems - up to specification ISO/IEC 11172-1:1999
 Mpeg II Systems - up to specification ISO/IEC 13818-1:2007
 Codec independent support

BACK

 ADOBE SWF VIDEOS (SHOCKWAVE FLASH)

 Known extensions: *.SWF
 Up to version 10
 Codec independent support
 Audio MP3 tracks analysis

BACK

 VOB VIDEOS (DVD - VIDEO OBJECT)

 Known extensions: *.VOB
 Mpeg II Systems - up to specification ISO/IEC 13818-1:2007
 Codec independent support

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 18

 ADOBE PDF FILES (PORTABLE DOCUMENT FORMAT)

 Known extensions: *.PDF
 Up to specification ISO/IEC 32000-1:2008
 Revision independent support

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 19

 SUGGESTIONS FOR BETTER RESULTS

CARRIER CHAINS:

Hide your data into single/multiple carrier chains, adding carriers in unexpected order. Unhiding
attempts by unallowed curious people will grow in complexity.

Single carrier example: (Simple, Fast unhiding time, Unsafe)
+MyData >> John.mp3

Single chain example: (Medium complexity, Medium unhiding time, Safe)
+MyData >> Bear.jpg | Zoo.tga | Arrow.png | John.bmp | …

Multiple chains example: (Maximum complexity, Slow unhiding time, Safer)
+MyData (1/n) >> Bear.jpg | Arrow.png | John.bmp | …
…
+MyData (n/n) >> Zoo.tga | Arrow.png | Beep.wav | …

PASSWORD:

Make use of long (>16 chars) easy to remember passwords, changing them every time.

CARRIER BITS SELECTION LEVEL:

Make always use of different levels for each hiding process. Unhiding attempts by unallowed curious
people will grow in complexity.

Example:
Hiding process 1:
 Aiff: Low
 BMP: Very low
 JPG: Maximum
…
Hiding process 2:
 AIFF: Medium
 BMP: Low
 JPG: Minimum
…

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 20

A FULL SYSTEM COULD BE…

 Hiding your data into many complex chains (hundreds of carriers, with non alphabetical random
order), each one with a completely different set of 32-chars-passwords

 Saving all settings inside an “index” single carrier

Example:

+MyData (1/n) [carrier1 | … | carrier100]
[VeryLongPasswords1]
[BitsSelectionLevel1]

…
+MyData (n/n) [carrier1 | … | carrier100]

[VeryLongPasswordsN]
[BitsSelectionLevelN]

A very unsuspicious “index” carrier (fixed password + fixed bits selection level) holding a text file that
summaries
 carriers name and order
 passwords
 bit selection levels

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 21

 OPTIONS: BITS SELECTION LEVEL

(Minimum) 1/8 data, 7/8 whitening.
(Very Low) 1/7 data, 6/7 whitening.
(Low) 1/6 data, 5/6 whitening.
(Medium) 1/5 data, 4/5 whitening.
(High) 1/4 data, 3/4 whitening.
(Very High) 1/3 data, 2/3 whitening.
(Maximum) 1/2 data, 1/2 whitening.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 22

 DATA HIDING STEP BY STEP

BEGIN:

(Hide) Go to hiding panel

Select Hide.

STEP 1:

(Cryptography A) First password (cryptography keys)
(Cryptography B) Second password (cryptography CSPRNG)
(Scrambling C) Third password (scrambling CSPRNG)
(Enable B) Second password enable/disable
(Enable C) Third password enable/disable

Insert three separate passwords. Each password has to be different (at bit level) and at least 8
characters long. Password type and number can be easily customized disabling the second (B) and/or
the third (C) password. Disabled passwords will be set as the first (A) password.

Example: “DataPssw1” (A) “DataPssw2” (B) “DataPssw3” (C)

(A) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110001
(B) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110010
(C) 01000100 01100001 01110100 01100001 01010000 01110011 01110011 01110111 00110011

(A ∩ B) 98%, (A ∩ C) 99%, (B ∩ C) 99%, HAMMING DISTANCE < 25% KO

Example: “FirstDataPssw1” (A) “SecondDataPssw2” (B) “AnotherDataPssw3” (C)

(A) 01000110 01101001 01110010 01110011 01110100 01000100 01100001 01110100 01100001 …
(B) 01010011 01100101 01100011 01101111 01101110 01100100 01000100 01100001 01110100 …
(C) 01000001 01101110 01101111 01110100 01101000 01100101 01110010 01000100 01100001 …

(A ∩ B) 70%, (A ∩ C) 67%, (B ∩ C) 68%, HAMMING DISTANCE ≥ 25% OK

SUGGESTIONS FOR BETTER RESULTS
WHAT IS DENIABLE STEGANOGRAPHY?

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 23

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Hamming_distance

STEP 2:

(Browse) Select a file

Choose the secret data you want to hide (typically a zip/rar/… archive).

STEP 3:

(Shuffle) Random shuffle all carriers
(Clear) Discard all carriers
(Add) Add new carriers to the list
(Name)/ (Bits) Sort carriers by name/bits
(+)/(-) Move selected carriers up/down
(Del) Delete selected carriers

Until selected bytes < total bytes try
 adding new carriers
 increasing bit selection level

(I) (II)

Some carriers will not be added because of steganography-process constraints
 (I) not enough carrier bytes (carrier bytes  carrier size)

WHAT IS STEGANOGRAPHY?
 (II) unsupported format

SUPPORTED FORMATS IN DETAIL

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 24

STEP 4:

(Reset Options) Reset all bits selection level to normal
(Add Decoy!) Add a decoy (deniable steganography)
(Hide!) Start hiding

After
 typing twice the same password, at least 8 chars
 selecting a non-empty file to hide
 adding enough carrier bits
 adding a decoy (optional)
start the hiding task

OPTIONS: BITS SELECTION LEVEL

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 25

TASK REPORT:

End report summarizes all information needed for a successful unhiding.

STEP 4 – (OPTIONAL):

(Cryptography A) First password (cryptography keys)
(Cryptography B) Second password (cryptography CSPRNG)
(Scrambling C) Third password (scrambling CSPRNG)
(Enable B) Second password enable/disable
(Enable C) Third password enable/disable
(Browse) Select a file
(Reset) Reset password and file
(Check & Accept) Check password correlation and file size

You can also add a decoy password and decoy data
 decoy passwords have to be each other different, and different from data passwords
 decoy password type and number can be customized like data passwords
 decoy data has to be compatible (by size) with sensitive data

∑ k  { 1, N-1 } used_carrier_bytes(carrk) < Sizeof(Decoy) ≤ ∑ k  { 1, N } used_carrier_bytes(carrk)

WHAT IS DENIABLE STEGANOGRAPHY?

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 26

 DATA UNHIDING STEP BY STEP

BEGIN:

(Unhide) Go to unhiding panel

Select Unhide.

STEP 1:

(Cryptography A) First password (cryptography keys)
(Cryptography B) Second password (cryptography CSPRNG)
(Scrambling C) Third password (scrambling CSPRNG)
(Enable B) Second password enable/disable
(Enable C) Third password enable/disable

Insert your passwords (secret to get secret data, decoy to get decoy data), enabling only those used at
hiding time.

SUGGESTIONS FOR BETTER RESULTS
WHAT IS DENIABLE STEGANOGRAPHY?

STEP 2:

(Clear) Discard all carriers
(Add) Add new carriers to the list
(Name)/ (Bits) Sort carriers by name/bits
(+)/(-) Move selected carriers up/down
(Del) Delete selected carriers

Add all the carriers that have been processed during the hide task.

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 27

SUPPORTED FORMATS IN DETAIL
STEP 3:

(Reset Options) Reset all bits selection level
(Unhide!) Start unhiding

After
 typing twice the same password
 adding all the carriers, in the right order
 setting all bits selection levels to the original value
start the unhiding task

OPTIONS: BITS SELECTION LEVEL

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 28

TASK REPORT:

If carriers have been added in the right order, with the original bits selection levels, OpenPuff will be
able to reconstruct the original data. For better security, data will be reconstructed only after a
successful CRC check.

Even the slightest change in one of the carrier could damage the data and prevent every unhiding try.

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 29

 MARK SETTING STEP BY STEP

BEGIN:

(Set Mark) Go to mark setting panel

Select Set Mark.

STEP 1:

(Insert mark) Your mark

Type once your mark.

STEP 2:

(Clear) Discard all carriers
(Add) Add new carriers to the list
(Name) Sort carriers by name
(Del) Delete selected carriers
(Set Mark!) Start mark setting

Add all the carriers that need to be marked.
Start the setting task.

SUPPORTED FORMATS IN DETAIL

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 30

 MARK CHECKING STEP BY STEP

BEGIN:

(Check Mark) Go to mark checking panel

Select Check Mark.

STEP 1:

(Clear) Discard all carriers
(Add) Add new carriers to the list
(Name) Sort carriers by name
(Del) Delete selected carriers
(Check Mark!) Start mark checking

Add all the carriers that need to be checked. Start the checking task.
SUPPORTED FORMATS IN DETAIL

TASK REPORT:

End report summarizes, for each carrier, integrity and mean integrity information.
BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 31

 DATA & MARK ERASING STEP BY STEP

BEGIN:

(Clean Up) Go to data & mark erasing panel

Select Clean Up.

STEP 1:

(Clear) Discard all carriers
(Add) Add new carriers to the list
(Name) Sort carriers by name
(Del) Delete selected carriers
(Clean Up!) Start data & mark erasing

Add all the carriers that need to be cleaned and start the cleaning task.

SUPPORTED FORMATS IN DETAIL

BACK

OPENPUFF V4.01 - ENGLISH - 11/JUL/2018 32

