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Abstract

This thesis proposes a framework for distributed computing based
on the Peer-to-Peer network Gnutella, suitable for Monte Carlo jobs,
for brute-force searches, and for randomized algorithms in general,
where almost no communication is necessary. Gnutella does not rec-
ognize privileges between users: everyone can get CPU resources,
if needed. The framework is being developed using common Open
Source techniques and is intended as a proof of concept. Finally, we
discuss the coupon collection problem and attempt a fractal argument
for the small world problem, both relevant for the framework.
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1 Introduction

Distributed Computing is a way to cluster computers, so that they perform
a common computation. Clients are specially assigned low priority processes
which use only computing power that would be wasted anyway, which can
be well in excess of 90%. In fact, modern operating systems are most of the
time idle and just wait for user input. (Wikipedia definition [4]). Although
most frameworks are centralized, the framework discussed here is distributed
on a Peer-To-Peer network [20] called Gnutella [5], instead.

Gnutella is a protocol sitting on top of the TCP/IP layer that allows
computers to connect each other in a random fashion to form a network.
The first Gnutella client was developed by Justin Frankel and Tom Pepper
of Nullsoft, a division of AOL, in early 2000. After connections between
computers are established, users can share their files and download them
from each other. Similarly, the proposed framework (called GPU1 [2,3,20])
allows users to share CPU-cycles on the network.

The GPU application runs in background and is able to start several
threads with low priority to handle incoming requests. Thus, the user vol-
unteering his/her computer is not bothered too much.

These threads access functionality stored as plugins. Plugins are the
backend side of the GPU framework: they extend its capability to handle
new requests. Plugins are ”signed” with PGP [7], a freeware framework for
asymmetric cryptography, to ensure they were not modified to run malicious
code.

Frontends permit users to submit jobs and to visualize their results in an
easy way. Users can keep up-to-date frontends, backends and the GPU itself
by accessing the ”autoupdate” features of the application.

Chapters 2, 3, 6, 7 and 8 are intended for everyone interested in dis-
tributed computing. Chapter 4 focuses on two theoretical problems that
relate to Gnutella and to the framework. Chapter 5 and 6 are for developers
that would like to extend the framework with plugins or frontends.

2 Architecture Overview

2.1 Application Overview

The application is organized as follows: GPU discovers new computers on
the network, establishes and keeps a predefined number of connections with

1Global Processing Unit or Gnutella Processing Unit
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Figure 1: Application Overview

other computers. When GPU detects incoming requests, it will start threads
or queue them for later handling, if the maximum number of threads is
reached. Once the computing thread is done, GPU sends the result back to
the requester and frees that thread from memory.

Plugins encapsulate algorithms that answer the incoming request: the
brute force attack to the discrete logarithm is one example [3], another is
the computation of a partial differential equation using the random walkers
approach and the Feynman-Kac formula [1]. Games like chess, where chess-
boards become leafs of a tree to be evaluated by a fitness function, could be
suitable for the framework as well, if implemented correctly.

Plugins are a library of functions, loaded at runtime by GPU. In Windows,
this dynamic link mechanism is provided by DLLs (files with extension .dll).
In Linux, the same mechanism is called shared objects and the corresponding
extension is .so. We give here a brief overview on how to write plugins with
graphical output.

Frontends are a complement to plugins; they simplify the submission of
jobs and the visualization of results: imagine playing chess by typing the
64 numbers representing the chessboard each time or visualizing the result
of the partial differential equation by reading the list of results for each
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Figure 2: Network Overview

coordinate. Frontends communicate with GPU using Windows messages (a
Linux implementation would use pipe and signals to achieve the same goal).
Through this privileged channel, the frontend is able to submit jobs and to
receive results.

In this document, we give a detailed overview on how to implement fron-
tends. For more insights on the framework, one should read the previous
work on GPU as well [3].

2.2 Network Overview

At startup, GPU does not know of any other computer to connect to. Gnutella
provides a node discovery technique to solve this problem (the GWebCache[9]):
web servers run by volunteers host special scripts (implemented in php, Perl
or as compiled cgi) where a new GPU client can register its IP number.
GPUs successively download a list of IPs from previous registrations. These
IPs are then tried one by one to find other computers that still run the GPU.

Depending on the connection speed, GPU tries to keep the number of
established connections between a minimum and a maximum. Typical values
for a 28 kbit modem are a minimum of 3 and a maximum of 6 connections, for
an ADSL connection, these are 8 and 20, respectively. If GPU is below the
minimum number and short of IPs, it connects again to the above mentioned
web servers (sometimes referred to as host catchers), registers its IP number
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again and tries to connect to the new IPs it downloads to establish outgoing
connections. At the same time, new nodes entering the network see the IP
number registered by the GPU on the web servers and attempt to connect
to them, so that the GPU gets incoming connections.

Incoming packets representing computational jobs or file searches are
routed using flooding. In flooding, once a packet reaches a node, it is im-
mediately sent out over all its other connections [3]. A Time-To-Live stamp
on packets prevents them from walking indefinitely through the network.

Additionally, GPUs keep a list of packets they routed recently: an incom-
ing packet that already belongs to the list is thrown away. In this manner,
the list cuts circles in the network. If we think of the network as a graph
where nodes represent computers and links connections between them, the
list ensures that our graph is a Direct Acyclic Graph (DAG).

In this list, the tuple (packet, incoming connection) is stored. Using
tuple information, GPUs can then route back the answer directly to the job
submitter, without using the flooding approach.

Briefly, Gnutella uses flooding to submit requests and dedicate routing
to receive answers. Finally, because Gnutella does not scale well in this
configuration, Ultrapeers are introduced so that the network tends to shape
itself into a tree. Ultrapeers are fast nodes that maintain many connections,
while slow nodes only keep one connection to one Ultrapeer.

A short introduction to Peer-to-Peer is [20], Gnutella and GPU are dis-
cussed in [3].

3 Programming for the GPU framework

3.1 Programming language

The framework is implemented in Delphi/Kylix [18], a Pascal dialect. Delphi
compiles Pascal source code for the Windows architecture and Kylix does the
same for for Linux. However, the produced object files are targeted to the
Intel architecture only. Another disadvantage is that only Borland produces
Delphi/Kylix.

Delphi/Kylix offers advantages as well; it is a standard, common RAD
tool (Rapid Application Development) used in industry, where robustness,
simplicity and speed, both in development and use, are a vital requirement
for companies. Delphi and its Linux counterpart use a component system
that allow a deeper encapsulation of data and methods than the normal
object oriented model does (for another programming language that uses
components, see JavaBeans [22]). Once written, components look like visual
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icons with properties and events. For example, a click on an icon’s event
automatically generates the method call in the correct object. The task left
to the developer is to add the lines of code for the method itself.

Pascal is well-known for its friendly compiler messages, too. Semantic
type-checks avoid passing wrong arguments to subroutines. In particular,
integers and pointers cannot be exchanged arbitrarily. Range-checking on
arrays at runtime ensure that the program never violates its address space.
The debugger, helped by the exception handling mechanism, is able to track
down the wrong line of source code in most of the cases.

A broad range of Open Source components is available and interfaces to
common libraries like OpenGL is provided. Good programmed components
with good debugging capabilities allow developers to get complex and robust
applications running quickly.

In short, the availability of Java to run on multiple architectures is sacri-
ficed in exchange for a RAD-tool with comparable object oriented features,
but able to generate compiled code like C++ does.

3.2 Differences with centralized frameworks

Many centralized frameworks exist today. In essence, a server distributes
tasks to clients and collects back results when the clients finish.

Seti@home [10], the first successful distributed computing framework
works as follows: an old supercomputer distributes data from a radio-telescope
to normal computers run by three million volunteers. A small program in-
stalled on these computers analyzes the data in the background using little
CPU-power while the user is working but full CPU-power if the screensaver
is active.

The analysis of data is done with a Fast Fourier Transform, to search
for Gaussian and peaks that might be of extraterrestrial nature. Results are
then sent back to the old supercomputer. Possibly interesting results are
then post-processed by scientists.

On the same track of Seti@home, many others have followed: for ex-
ample Folding@home [11], Climateprediction.net [12], distributed.net
[13] and Chessbrain [14]. An attempt to unify many projects under the
same infrastructure is currently done by BOINC (Berkeley Open Infrastruc-
ture for Distributed Computing [15]). As of today, (February 2004) BOINC is
in Beta-Test and we can soon expect to see it running on millions of machines.

Being of distributed nature, the GPU project cannot position itself with
these big centralized projects. With Gnutella, each user reaches only around
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Figure 3: Architecture of the BOINC[15] project, an extensible centralized
model.

2000 computers2 (with a Time-To-Live stamp of 7), about the size of a normal
Beowulf Cluster. More computers could be built into a cluster, but each
machine will see only about 2000 because Gnutella packets have a count-
down counter decreased each time a computer is reached; Once decremental
count gets zero, the packet is destroyed and no more nodes could be seen [3].

Additionally, clients have to stay online and operational; GPUs cannot
simply disconnect and crunch data offline because they have to keep the net-
work operational by forwarding jobs and answers. This disadvantage might
slowly fade away, thanks to the new ADSL connections that provide 24-hour
access for a reasonable monthly fee.

The main advantage of the GPU framework is that everyone can use the
framework for his/her own purposes. Users running Chessbrain on their
home computer follow one match only (in February 2002, against Grand
Master Peter Nielsen). Users running GPU can occasionally play against
the entire GPU framework (although please notice that the provided Chess
plugin, chessbackend.dll, is an example of a frontend and still does not

2see 4.3 for an estimation of this number
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implement parallelism).

We can think of scientists with small budgets developing plugins for the
framework or of developers implementing distributed databases in a similar
way. Through the ”autoupdate” routines, the plugin will eventually spread
to all GPUs. Note that the choice to update is left to the user.

Some other weaker differences and considerations are:

• A centralized model is normally backed by an institution that con-
stantly produces data for the computing network.

• In a centralized model, volunteers can group in teams and compete
both individually or in a team. This is an important motivation factor.

• Motivation for GPU should arise from the fact that everyone is part of
a bigger entity, represented by the virtual supercomputer. Volunteers
compute for others, but can ask for computational time as well.

3.3 GPU Protocol

The GPU protocol is very simple. A more advanced proposal is given in
BOINC for the centralized model, and in [16] for a Peer-to-Peer approach.
Due to Delphi, and viewed that the computing engine is encapsulated in a
component, getting other protocols on the framework is easy, namely throw
another component on the Delphi form. Currently in GPU, the component
that does connections to Gnutella was written and is maintained by a German
programmer, Kamil Pogorzelski [17].

As we saw previously, in the file-sharing network there are two types of
packets (there are more [5], but these are the ones that concern us): the
request for files and the answer. The GPU framework does it similarly; it
creates a request string or an answer and spreads it throughout the Gnutella
disguised as search string for files. This is inelegant, but fits our need of
rapid prototyping and of compatibility with other Gnutella clients3. This
might change in future, as we hope to provide a cleaner implementation with
Gnutella packets dedicated to the GPU framework. A priority queue might
be useful, too. Users with long uptime and many computed results should
be privileged with high-priority requests.

A request for computational time is built as follows; fields are separated
by GPU with ’:’.

3although most Gnutella clients drop GPU strings because they are too long
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Request Header identifies search for files as computational job
Internal ID each job gets a different identifier, so that

the list in Gnutella does not block the packet,
if the same job is submitted twice.

GUID Global Unique Identifier, identifies requester on network
JobID ID for the GPU Job

Command String to be interpreted by the Virtual Machine

Table 1: GPU Request

Result header identifies search for files as result of a computation
Internal ID each result gets a different identifier, so that

Gnutella does not block the packet,
if the result is submitted twice.

GUID of requester Global Unique Identifier of the requester
JobID ID for the GPU Job

Computing Time how long it took to compute the result
Result String in the Virtual Machine Format

Table 2: GPU Result

4 Theoretical considerations

4.1 Randomized algorithms

To implement plugins and frontends in the proposed framework, it is first
important to recognize that the entire network does not provide any guaran-
tees of availability. Computing nodes might go down in the middle of a job
for several reasons like power failure, network congestion or just because the
computer is shut down by the user. This is a crucial difference, compared to
the MPI [1,8] or the OpenMP[1] library, where the developer decides a priori
how many nodes will compute.

A second issue, at least as serious as the first, involves the nature of
Gnutella: all packets sent to the connected computers will be exactly the
same. Each computing node will get the same arguments to start the com-
putation, although they may compute different results. In a similar way,
all file sharing programs may get the same request for a particular song’s
author, but are able to answer with different files they host, all from the
same author. Notice that this issue is intrinsic in the Gnutella network: each
node knows only its neighborhood4. We do not have topology information

4although this could be changed with the Network Mapper, see section 6.6
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and therefore we cannot split our computation in pieces of different length.
Moreover, the entire network topology changes rapidly. So, there is no way
to pass particular arguments to particular nodes.

To solve the issue, we propose several solutions that all involve some use
of randomness.

Special randomized algorithms can alleviate our concerns. For some cat-
egories of problems, Monte Carlo methods produce reasonable results. In
this category, we can place the plugins that solve Pi and the partial dif-
ferential equations with the Feynman-Kac formula [1] (pi.dll, pde.dll,

pde3d.dll). Most Monte Carlo methods are not suitable to get an exact
solution though they provide good approximations.

Genetic algorithms, and genetic algorithms with neural networks might
be suitable for the framework: however, frontends will be charged with ad-
ditional management tasks.

Some brute-force tasks can be randomized using mathematical properties
of the problem. As an example the discrete logarithm problem can be solved
using the Pollard-Rho algorithm5.

As further brute-force tasks, we mention here the Search for Golomb
Rulers and attacks on encrypted codes.

All brute-force tasks, where a big range of possible solutions is searched,
can be randomized; We split our search space into m sub domains. How
many times n do we need to solve an incoming job with random parameters
that specify a sub domain i (1 ≤ i ≤ m) of our task, to receive at least an
answer from each sub domain?

4.2 Throwing N stones into M boxes

We reformulate the problem in the previous section differently: assuming we
have M boxes, how many stones N do we have to throw randomly to get at
least one stone inside each box with probability p0 provided that N ≥ M?

Notice that in the reformulation, beside the constraint were we ensure that
the number of stones is at least equal to the number of boxes, we introduced
a probability p0. This because it is impossible to ensure that at least one
stone will be in each box with 100% probability. Although with very little
probability, all stones might fall in the same box even if we threw thousands
of them. Therefore, we can think only in expectation values. In particular,

5The plugin that solves the discrete logarithm problem in GPU (crypto.dll as pre-
sented in [3]) uses a modified version of the baby step-giant step algorithm that underwent
modifications described above. It was developed before the author was aware of the
Pollard-Rho algorithm.
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we are interested if the number of stones to be thrown N grows with the sub
domain size M while keeping a reasonable and constant probability p0.

The problem is often referred in literature as the ”coupon collector prob-
lem” or ”classical occupancy problem”[28]. A nice Java applet to visualize
it is [27].

4.2.1 Focus on one particular box

Firstly, we focus on one box only:
For each thrown stone, the probability that a stones falls in this particular
box is 1

M
. The probability that it falls on another box is 1− 1

M
= M−1

M
.

Figure 4: Probability tree leads to a binomial distribution.

If we throw N stones, we can build a binary tree of height N . In each
tree’s node, we choose the left path if the stone falls into the particular box
we focus. The right path is chosen if it falls in another one. The probability

that no stone falls in our box after N throws is pnone = M−1
M

N
and follows

the rightmost arm of the tree with height N .

In general, the probability to have k stones into one box follows the
binomial distribution. With p = 1

M
, we state

p(k) =

(
N

k

)
pk(1− p)N−k.

In N binomial k, we select all paths in the tree with k stones inside the box
and we assign to each sub path the correct probability depending if it was a
success or a failure. In short, we have a B(n, p) probability distribution for
each box of our problem where n = N and p = 1

M
. E[B(n, p)] is N

M
.

To compute the standard deviation, one can choose a Poisson distribution
as approximation for B(n, p). This is because n is big (N) and p is small ( 1

M
).

For the Poisson distribution, λ is then λ = nP = N
M

. The variance of the



4 THEORETICAL CONSIDERATIONS 14

Figure 5: Dependence versus independence

Poisson distribution is λ = N
M

, The standard deviation for Poisson is therefore√
( N

M
). Alternatively, one can compute σ for B(n, p) using V ar(k) = E(k2)−

E(k)2 and a differentiation trick. For large Ms, standard deviation and
variance are the same for both distributions, N(1 − 1

M
) 1

M
for Binomial and

N
M

for Poisson.

Here, it is important to notice the following: while pnone = (M−1
M

)N is the
probability that one particular box is empty, it is not possible to generalize
with (1−pnone)

M to the problem where all boxes have at least one stone; the
boxes are not independent from each other: a stone that does not land into
a box does not fall apart but lands in another box, as in Figure 5.

4.2.2 Problem solved with a recurrence

Let A(N, M) be the number of arrangements leaving none of the M bins
empty [28]. We imagine adding an additional bin. This bin contains k stones
(1 ≤ k ≤ N) but not 0, so that we can express the number of arrangements
in the other bins with A(N − k,M). Therefore, the number of arrangements
leaving none of the M + 1 bins empty satisfies a recurrence,

A(N, M + 1) =
N∑

k=1

(
N

k

)
A(N − k,M).

The solution to the recurrence is given by:

A(N, M) =
M∑

ν=0

(−1)ν

(
M

ν

)
(M − ν)N .

To prove it by induction, one can plug the solution into the recurrence for-
mula. It is necessary to change the order of summation and use the binomial
formula to express A(N, M + 1) as the difference of two simple sums [28].
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Figure 6: Composing the recurrence formula

4.2.3 Problem from a different perspective

We follow [28] here. We first change the way we look at the problem; we
imagine now to have the N stones in a line, and to assign to each of them a
number between 1 and M - this number is the box the stone falls in. There
are MN possible distributions, each with probability 1

MN = M−N . We seek
the probability p0(N, M) of finding all cells occupied.

Let Ak be the event that cell number k is empty (k = 1, 2, · · · , n). In
this situation all N stones are placed in the remaining (M − 1) cells, and
this can be done in (M − 1)N different ways. Similarly, there are (M − 2)N

arrangements, leaving two preassigned cells empty, etc. Accordingly and

with (M−1)N

MN = (1− 1
M

)N :

pi = (1− 1

M
)N , pij = (1− 2

M
)N , pijk = (1− 3

M
)N , · · ·

and hence for every 1 ≤ ν ≤ M

Sν =

(
M

ν

)
(1− ν

M
)N .

Sν is the sum of probabilities, where each arrangement with ν cells empty
appears once and only once.
We use now an important theorem proved in [28, pg 99]:

Theorem The probability P1 of the realization of at least one among the
events A1, A2, · · · , AM is given by an alternating sum

P1 = S1 − S2 + S3 − S4 +− · · · ± SM .
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Hence, the the probability that all cells are occupied is

p0(N, M) = 1− S1 + S2 −+ · · · =
M∑

ν=0

(−1)ν

(
M

ν

)
(1− ν

M
)N .

This probability is the solution to the recurrence formula that gave the num-
ber of arrangements with no cells empty divided by the total number of
arrangements MN .

4.2.4 Approximation with a Poisson distribution

It is clear that a direct numerical evaluation of p0 is limited to the case of
relatively small M and N. According to [28], it is possible to estimate pm, the
probability to have exactly m cells empty, with a Poisson distribution.

λ = Me−
N
M

pm(N, M) = e−λ λm

m!

In our case, we use m = 0 to get all cells occupied:

p0(N, M) = e−λ

4.2.5 Simulation with a plugin

Using the plugin stattest.dll, we estimate our problem with a simulation.
We computed for each point in the graph the N stones to M boxes problem

100000 times. Each time, we looked if we were able to cover the domain M
with at least one stone and we averaged to get the p!0(N, M) probability.

Syntax for the plugin is:

[M],[N],[number of attempts],throwNstonestoMboxes

The plugin gives two probabilities back:

[probability that all cells are occupied],

[1-(average coverage probability)]

The first probability is p0(N, M). The numbers fit our formula and the
approximation with e−λ.

In the second probability, we looked at what percentage of the domain
was not covered with at least one stone through all 100000 realizations of
the experiment. The graphs shows that the uncovered domain decreases
independently from the size M of our problem, in respect to N

M
.
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Figure 7: Probability p0(N, M) to cover entire domain with at least one stone

Figure 8: Average failure probability in respect to coverage
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4.2.6 Conclusion to the occupancy problem

While GPU is not suitable for tasks where the domain M has to be covered
entirely, it could work for tasks where the analysis of big parts of it suffices.

Having multiple answers to the same request is not that bad: available
computing power is amazing. In November 2003, Seti@home crunched all
available data and is now reprocessing data again; the telescope does not
record enough data, although a minute of sky observation turns into 10 hours
of Fast Fourier transform analysis.

Additionally, people might compute wrong results intentionally, but their
efforts will disappear in random noise due to the nature of Monte Carlo
computations, because results will be computed multiple times by different
users.
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4.3 Small world problem estimated with a fractal ar-
gument

Limewire, a popular Gnutella client, estimates the network size each day
with a Gnutella Crawler[23]. In the early days of Gnutella, there were 500000
nodes. Now, Gnutella feels competition of other popular file sharing networks
like eMule and Kazaa; network size dropped down to about 100000 (March
2004).

An interesting problem arises: how many users are reachable by one
user in the Gnutella network? How should one set the count-down timer in
each packet to reach all nodes? The problem is equivalent to the following
one: how many people are between any two people or between you and the
President of the United Nations, as an example? This is sometimes referred as
the small world problem, a common experience of many of us: we meet a new
friend and we discover he/she knows someone we know as well. Milgram’s
experiment showed empirically that any two people in the United States are
distant six edges from each other.

To solve the problem, we attempt a volumetric argument. Some fractal
arguments are given in [26], although they go by far more in depth. However,
we start our argument with an analogic machine to compute the solution.
Results are consistent with Mandelbrot’s fractal theory [24,25].

Stating the problem Given a random graph G with N nodes, G(N, E).
The average number of connections per node6 is M. In other words, each
node has M connections to other nodes. Take randomly two nodes out of
the graph: what is the average path length between these two nodes? To
compute the average path length, we always choose the shortest distance7.

4.3.1 Analogic machine to compute solution

Imagine a table with a random graph on it. Unlike normal graph theory, we
force all edges to the same length. The reason for this will soon be clear; we
take the node that represents ourself and elevate it over the table, the rest
of the graph falls down in disorderly fashion. Equipped with scissors, we cut
edges that go back to upper levels of the graph, until our graph turns into a
tree; as soon as all double edges are cut, the entire tree falls down like a line
thanks to the force of gravity. Levels in the tree are all of the same length,
thanks to our initial constraint.

6the degree of a node
7In Gnutella, duplicates are thrown away: packets travel through the shortest path
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We take the tree and put it level by level into a bin. We count how many
levels we put into the bin until we reach the presidential node; this is then
the path length between us and the President. Unfortunately, depending on
how we cut the graph, the path length might change a lot.

Notice that because we force the same edge length on all edges, a random
graph might not fit on the table, but partially elevate into air. And even with
3 dimensions, there will be random graphs that we cannot construct, if they
have lot of edges and if these edges cannot stretch. Nonetheless, these graphs
exist in high-dimensional spaces we cannot easily imagine, with d > 3.

This is strong evidence for a dimensional path to the solution.

Figure 9: Forcing fixed length edges on a simplified one dimensional table.

4.3.2 Reducing the problem to a 2D-volumetric argument

Given a random subgraph Gsub(n ⊆ N, e ⊆ E) of G(N, E). How many
edges connect Gsub to G \ Gsub? We imagine Gsub and G really big graphs
embedded in the plane; imagine coloring red nodes belonging to Gsub and
yellow for nodes in G \ Gsub. Now we look at them from far away: nodes
and edges look like a tiny lattice and eventually disappear into two uniform
areas, one red and one yellow. Assume we set n = A ∝ r2 where A is a
graph’s area. The perimeter of the graph’s area is then proportional to r,
and the number of outgoing connections proportional to r ∝

√
n, too.

It is important to note here that the form of the subgraph changes area
up to a constant (A1 = πr2 for a circle and A2 = 4r2 for a square) but does
not change the radius dimensionality.

Assume we could solve the problem stated in this paragraph: we could
then sum up ei until we reach N . In the analogic mechanism, ei is the number
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Figure 10: Gsub and G seen from far away

of nodes added to each level of the tree to the bin.

l∑
1

ei = N

with ei: number of outgoing edges for graph with i nodes and l maximum
path length.

4.3.3 Volumetric argument in more dimensions

If we decide that our lattice is not constrained to planes, then we propose
the following nodes with constant degree M as building blocks.

Figure 11: Building blocks, lattice where we embed G and Gsub.

We chose building blocks so that they generate homogeneous grids and
with fixed length edges. Both constraints are necessary for the volumetric
argument we want to use. Homogeneity is similar to the requirement for
planar graphs in normal graph theory that edges do not cross. Edge-crossing
would generate inhomogeneities with fixed length edges on 2D grids.

If M is even, we naturally choose edges perpendicular to each other. Two
counter-directed edges of the building block form an independent axis in the
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d dimensional axis. Therefore, we set

d =
M

2

If M is odd, we might looked puzzled at the fractional dimension, a sort of
in between dimension.

Furthermore, we know that the boundary of a subgraph has a dimension
less (for a sphere V = 4π

3
r3 >, but Asurface = 4πr2). In general, if the

subgraph is d-dimensional, the volume is proportional to rd and the boundary
to rd−1. Size of the random subgraph Gsub with n nodes is then:

Vsub = n ∝ rd.

The number of outgoing edges is proportional to the size of the boundary,
rd−1 namely.

en ∝ rd−1

We now start in the middle of our subgraph, and we subsequently add
nodes until we reach the boundary. In the analogous mechanism of adding
nodes means putting them into the bin, i, representing the height of the tree
and the boundary is reached until all nodes are into the bin.

l∑
1

id−1 ∝ N

We imagine a tiny lattice of nodes and we therefore turn summation into an
integral:

l∑
1

id−1 =

∫ l

0

id−1di =
id

d
|l0∝ N

Thus:
ld

d
∝ N

and:

N ∝ l
M
2

M
2

Solving for l gives:

l ∝ (N
M

2
)

2
M .

Solving for M requires a numerical approximation.
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Resuming, we consider Gsub embedded in G, both in a homogeneous
d-dimensional grid composed by myriads of the above mentioned building
blocks. We let Gsub grow until it reaches the same size of G through sum-
mation and we infer l.

Results are very similar to the Mandelbrot’s formula

N ∝ ld

that relates mass (N) and linear extension l with the exponent d [25].

4.3.4 Applying the formula

A homogeneous Gnutella is a fractal with dimension d = 7.79 according
to the following table that lists some related problems estimated with our
formula, in bold text we highlight the computed result, the other numbers
are assumptions:

Description N M d l
Gnutella 500000 15.58 7.79 7 (TTL)
Milgram’s experiment 250 · 106 24.38 12.19 6
World 6 · 109 24.38 12.19 7.78
Switzerland 7 · 106 24.38 12.19 4.47
Poschiavo 3500 24.38 12.19 2.39
CPU 3 · 106 3 1.5 27257
Brain 100 · 109 10 5 218.67

For Gnutella, we know l as the standard TTL8 and the number of nodes
computed by the Gnutella crawler[23]. Using the formula, we compute the
dimension d and the average number of outgoing connections M .

Milgram’s experiment showed that in the United States, a country with
about 250 million (N) inhabitants, there are 6 (l) degrees of separation. The
formula estimates that each person knows about 25 people enough well to
perform the experiment.

Using Milgram’s M , we compute l for the entire world, for Switzerland
and for a little village in the mountains.

We try the formula on the brain, a complex network with 100 billion
neurons. Each neuron has about 15000 connections but is connected to a
neighborhood of about 10 other neurons only, about 1500 connections for
each neuron. The path length would be then 218. We idealized the CPU

8see also the Benchmark section for the line topology
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as it would be composed by 3 million NAND ports, with 2 inputs and one
output.

However, Gnutella and the above mentioned problems are far from ho-
mogeneous in the degree of the nodes, so that our formula gives only a rough
estimation.

4.3.5 Diffusion effect

In [3], we compared Gnutella and the alternative routing algorithm with
random walkers to a diffusion experiment. Following Mandelbrot, we could
imagine the diffusion of Gnutella packets in the d = 7.79 dimensional spatial
lattice. In a physics analogy, we could compare diffusion speed of one node
per unit of time to the speed of light in Euclidean space. Finally, if we would
relax the fixed length constraint on our edges (edge length could be set at
the temporal distance between two Gnutella nodes), we would then embed
Gnutella in a curved hyperspace!

4.4 The centralized model as subset of GPU

How do we turn GPU back to the centralized model? Viewed that GPUs all
receive the same string as a parameter, we cannot transmit different infor-
mation on which data to process to each GPU.

A natural workaround would be to implement a web server with a .php

script that sends different data each time. To avoid all GPUs accessing the
web server at the same time, plugins should distribute connection attempts
with exponential waiting. The entire Gnutella mechanism becomes a trigger
to start the centralized computation.
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Figure 12: Three threads are computing with graphics output.

5 How to implement a plugin with graphics

output

We gave a detailed overview on how to implement plugins in [3], with some
additional explanations to help C-developers to see some Delphi-C differ-
ences. We briefly repeat some basics here.

5.1 Introduction

Dynamic link libraries (in Windows) or shared objects (in Linux) are collec-
tions of methods loaded and linked at runtime. ”Dynamic Linking” means
that the memory address of the function is known only at runtime, and not
previously at compilation time (as in static libraries).

GPU loads at runtime all dynamic link libraries in the subdirectory
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plugins of the application. They do not necessarily have to be implemented
in Delphi and could be implemented in C as well.

In order to be called by the virtual machine, a method has to have the
following signature:

function add(var stk : TStack) : Boolean; stdcall;

stk is a variable passed by reference. In C-terminology, it is a pointer
to a struct that contains an array of double (extended-precision floating
points) and an index value that points to one of the array’s elements. The
function can modify this array and the index pointer as well, although typical
functions like add simply add the two last parameters and push the result
onto the stack. Finally, add returns true if the computation was successful;
if there are not enough parameters, add returns false.

5.2 Graphics output

All centralized frameworks offer a way to graphically display partial results
of the ongoing computation. Also to debug, it is important to have some
graphics. However, a much higher computational speed could be achieved,
probably at least one order of magnitude, if graphics were disabled. For
this reason, Seti@Home [10] provides one graphical, and one non-graphical
version of the client. In this section, we will see how GPU tries to minimize
the problem.

We explored several possibilities of adding graphics to the ongoing com-
putation. Some constraints of Delphi/Kylix limited our choice: in particular,
graphical output cannot be displayed at any time, but must be synchronized
with VCL, the Visual Component Library assigned to manage graphics and
control behavior in Delphi.

A simple example, the pi plugin extended with graphics output, can be
found in /dllbuilding/pi.

To provide graphics output, a plugin implements an additional method
in the dynamic link library:

function update(var stk : TStack):Boolean; stdcall;

For each plugin, there can be only one update method. Update receives
the same stk parameter described before. However, the struct stk contains
now additional fields that were not present at the time [3] was written.

TStack, the struct definition is defined by:
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type TStack = record

Stack : Array [1..MAXSTACK] of Extended;

StIdx : LongInt; { Index on Stack where

Operations take place. StIdx

cannot be more than MAXSTACK

}

{new fields}

Progress : Real; { indicates plugin progress

from 0 to 100

}

My : Pointer; { used to store data passed

between update and

function itself

}

{$IFDEF MSWINDOWS}

hw : HWND; { handle to the window where

graphics are displayed

}

{$ENDIF}

Update : Boolean; { function desires an update

}

{$IFDEF STRINGS} { future extension }

StrStack : Array [1..MAXSTRINGS] of Strings;

StrIdx : LongInt;

{$ENDIF}

end;

Besides the earlier described Stack and StIdx [3] we have new fields.

If a plugin wants graphical output, it needs a sort of cooperative multi-
threading. A plugin should release control by exiting the function from time
to time while slowly increasing the field Progress. In between, the update
function is called. Once Progress reaches 100, the virtual machine [3] con-
siders the plugin finished and is ready to continue the stack evaluation. For
backward compatibility reasons, if Progress remains 0 after the first call,
the plugin is considered finished. Additionally, a graphics plugin will set
stk.Update to true, to signal that the function wants an update.

We take a closer look at the internals, to understand better what happens;
if GPU is idle and gets a new incoming job, it creates a ComputationThread

(in ComputationThread.pas) that is executed via the following main loop
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(simplified):

Stk.Update := False;

Stk.Progress := 0;

repeat

Found := PlugMan.ExecFuncInPlugins(FunctionName,stk,...);

if (UpdateNeeded and Stk.Update) then Synchronize(Update);

until ((Stk.Progress=0) or (Stk.Progress=100) or Terminated);

PlugMan (in PluginManager.pas) deals with plugins. Method
ExecFuncInPlugins searches through all available plugins for a method
called FunctionName. Once found, it calls FunctionName and passes stk

as parameter.

UpdateNeeded is true only if the user is in the window, where plugins
display graphics output. If GPU is minimized, or the volunteer is using
other functionality of GPU (like the chat system), UpdateNeeded stays false
and there is no need to synchronize with the VCL; in particular, we do not
waste computer cycles to display graphics on a hidden component. In this
way, we do not need to provide two separate plugins, one graphical and one
non-graphical.

Terminated is set if the thread is forced to exit, if the user closes GPU,
or if he wants to reset the virtual machine.

5.3 Drawing on the window

Field hw is enclosed in a Delphi compiler directive. This means for Linux,
graphics output is not available yet. Field hw is a handle to the little win-
dow where graphics are displayed, as in Figure 12. This handle has to be
initialized and freed. Using hw, a Canvas object has to be instantiated and
freed. Object Canvas provides then lot of painting methods, like LineTo and
Ellipse. Please refer to source code of the pi.dll plugin for more details.
An even more advanced plugin with 3D graphics implemented in OpenGL
[21] is teapot.dll.

5.4 Passing data between update and plugin function

The last topic we discuss is how to pass computational data from the plugin
function to the update function. Two methods are quite inelegant: it is
possible to write a file, or to pass data on the stack.

The best solution, however, is to use the my pointer in TStack to create
a struct containing data of interest for the update function.
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Assume, we want to pass a list of points. First, one should define a data
structure to be passed:

type TMyData = record

xP : Array[1..MAX_POINTS] of Real;

yP : Array[1..MAX_POINTS] of Real;

end;

In the plugin method, at the beginning of the computation, we reserve
memory for this structure, then we store the pointer in my and initialize it.

if stk.Progress = 0 then

begin

GetMem(Stk.My, SizeOf(TMyData));

with TMyData(Stk.My^) do

begin

for i:=1 to MAX_POINTS do

begin

xP[i]:=0;

yP[i]:=0;

end;

end; {with}

end;

In the update function, we free the reserved memory at the end of the
computation with

if Stk.Progress = 100 then FreeMem(Stk.My, SizeOf(TMyData));

To access the first element of the xP array in both function and update
method we typecast the my pointer to the TMyData structure before accessing
the field xP:

TMyData(Stk.My^).xP[1];

5.5 Future extensions

The last two fields, StrStack and StrIdx enclosed in the disabled $Strings

directive, will allow plugins to get strings as parameters as well. This will be
crucial if a plugin needs an URL to download data, for example. At time of
writing (February 2004), this feature is not implemented in the framework.
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5.6 Example: Feynman Kac plugin

5.6.1 Seed management

An important fundament of science is to guarantee reproducibility of results.
However, the Gnutella system does not allow providing nodes with differ-
ent initial parameters; all packets addressed to the nodes contain the same
command string. Therefore, it is not possible to pass a different, initial seed
for the pseudo-random generator [19] to the nodes. Assuming it would be
possible to pass different initial seeds to the nodes, reproducibility of results
would be ensured by passing the same seeds to the same nodes each time.

GPU solves the issue as follows: each time a new GPU is installed and
executed for the first time, the standard Delphi generator is seeded with the
clock (with millisecond resolution) and date. Using this random generator,
a seed file with 256 words is generated and stored in a file, once. Each new
GPU gets in this way another seed file with high probability, unless they are
installed on the same millisecond.

ISAAC[19] is a powerful pseudo-random generator implemented in
isaacrnd.dll by Sebastian Sauvage. ISAAC loads the 256 words previously
stored by the standard Delphi-generator to initialize itself. From then on,
each node will provide a different sequence of pseudorandom numbers. How-
ever, if we restart all GPUs, each machine will regenerate the same sequence.

Reproducibility of results on one machine, not connected to other ma-
chines, is therefore guaranteed.

Ensuring reproducibility of results in GPU while running on a network
requires more work: we have to ensure all GPUs are started afresh; we have
to know the seed file for each node and we have to connect GPUs with
each other in the same manner we did before. Consequently, reproducibility
of results is theoretically possible, although different operating system load
might introduce an additional uncertainty in how jobs spread in the network.

5.6.2 Feynman-Kac plugin description

This plugin solves Exercise 2.2 of the ”Introduction to Parallel Computing”
book described at page 82 [1].

We solve a partial differential equation inside an elliptical region by Monte
Carlo simulations of the Feynman-Kac formula. The following partial differ-
ential equation is defined in a three-dimensional ellipsoid E :

1

2
4u(x, y, z)− v(x, y, z)u(x, y, z) = 0,
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where the ellipsoidal domain is

D =

{
(x, y, z) ∈ R3;

x2

a2
+

y2

b2
+

z2

c2
< 1

}
.

The potential is

v(x, y, z) = 2(
x2

a4
+

y2

b4
+

z2

c4
+

1

a2
+

1

b2
+

1

c2
).

Our Dirichlet boundary condition is u = g(x) = 1 when x ∈ ∂D.

The goal is to solve this boundary value problem at x = (x, y, z) by a
Monte Carlo simulation. At the heart of the simulation lies the Feynman-Kac
formula, which in our case (g = 1) is

u(x, y, z) = E g(X(τ)) exp

(
−
∫ τ

0

v(X(s))ds

)

u(x, y, z) = E exp

(
−
∫ τ

0

v(X(s))ds

)
u(x, y, z) = E Y (τ).

which describes the solution u in terms of an expectation value of a stochastic
process Y whose initial value Y (0) = 1. Here X(s) is a Brownian motion
starting from X(0) = x and τ is its exit time from D.

It is important to point out that the E operator in simulation means
Ef = 1

N

∑N
i=1 fi for samples of size N . The plugin pde3d.dll can be called

in two different ways:

0,[a],[b],[c],feynmankac3d

1,[a],[b],[c],[initialx],[initialy],[initialz],feynmankac3d

The first call passes the ellipses axes as parameter. The function
feynmankac3d stored in pde3d.dll generates first randomly a point x inside
the ellipse. In the second call, we can specify the initial

x = ([initialx], [initialy], [initialz]).

0 or 1 inform the plugin on how many parameters are loaded on the stack.
From this initial interior point X(0) = x ∈ D we integrate the following

system of stochastic differential equations (W is a Brownian motion). We
use N realizations of X(t) to integrate.

dX = dW

dY = −v(X(t))Y dt
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For each realization, we integrate this set of equations until X(t) exits at time
t = τ using the trapezoidal rule [1]. Finally, we compute u(x) = EY (X(τ))
to get the solution.

To plot the error, we compare it to the exact analytical solution of the
partial differential equation, computed by two differentiations:

u(x, y, z) = exp(
x2

a2
+

y2

b2
+

z2

c2
− 1).

The error in the plugin’s graphical output is plotted as an oscillating green
line around the y axis. After oscillating for a while, the error tends to con-
verge to the y axis. Only one out of many random walks (X(t)) is plotted
with red or white colors.

Roughly speaking, we free a horde of random walkers from an initial point.
These walkers diffuse while Y is integrated with rate −v(X) on the potential
v until they reach the boundary of the ellipse. All walks are averaged in
a similar way as it is done with the pi plugin to get the function value at
the chosen initial point. The diffusion process of the walkers, distributed as
a trivariate normal density, weights points near the initial point more than
points far away.
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Figure 13: GPU computing the Feynman-Kac problem and corresponding
frontend.

6 How to implement a frontend

6.1 Introduction

In this section, we explain in depth how to implement a new frontend for the
framework. Frontends are normal applications that communicate to GPU
through messages. They are stored in the frontend subdirectory of the
GPU package.

Frontends send requests to the GPU application, and GPU spreads their
requests through the Gnutella network. Once results came back, GPU noti-
fies the frontend9.

9The autoupdate routines are implemented as a frontend that sends a little shutdown
message to GPU. Doing so, it is possible to overwrite the GPU executable without getting
errors.
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The following paragraphs come from ”Getting the Message - Simple Tech-
niques for Communicating Between Applications” by Robert Vivrette [6].
You can refer to the source code simple frontend.pas in the
/frontend/simple subdirectory of the GPU application as well.

Interprocess Communications is a broad description of any kind of com-
munication between separate applications or processes. In particular, we will
speak here about Windows messaging and Memory mapped files.

6.2 Windows Message

A Windows message is a record structure that Windows uses to communicate
information around between controls, forms, windows, etc. The message
structure first has a field called HWnd which is a handle to the window or
control that the message is directed to. Next comes the message field which
is the actual message type being sent. For a mouse click, the message type
would be WM MOUSEDOWN. Next come two fields for passing message-specific
data along with the message. These are named WParam and Lparam, two
longint values [6].

type

TMsg = packed record

hwnd: HWND; // the handle of the Window for which the

// message is intended

message: UINT; // the message constant identifier

wParam : WPARAM; // 32 bits of message-specific information

lParam : LPARAM; // 32 bits of message-specific information

time : DWORD; // the time that the message was created

pt : TPoint; // Mouse cursor position when the message

end; // was created

6.3 Message loop

All applications, if idle, are in a loop that checks if there are new Windows
messages. By incoming messages, the loop calls the corresponding function.
If we want to create our own inter-process message WMsgGPUResult, we will
need to override the WndProc procedure called by the loop and listen in for
the new message type we defined [6].

TForm1 = class(TForm)

...

public
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procedure WndProc(var TheMsg: TMessage); override;

end;

procedure TForm1.WndProc(Var TheMsg: TMessage);

begin

if TheMsg.Msg = WMsgGPUResult then

begin

{It is our custom message - deal with it!}

end;

Inherited WndProc(TheMsg);

end;

6.4 How to define a new message type

To define a new message type, we need a constant that does not collide with
something previously defined by the operating system or by other applica-
tions. In GPU, we call a Windows API function at startup that hashes a
string to a constant.

procedure TForm1.FormCreate(Sender : TObject)

begin

WMsgGPURequest := RegisterWindowMessage(’GPURequest’);

WMsgGPUResult := RegisterWindwoMessage(’GPUResult’);

end;

To send a message we can then call

SendMessage(GPUHWnd,WMsgGPURequest,0,0);

GPUHWnd is the Handle that identifies the GPU application. It can be
retrieved using

GPUHWnd := FindWindow(’TMainForm’, nil);

6.5 Memory Mapped Files

We know now how to receive messages through the message loop and how to
send them using SendMessage(...). However, we can only send the little
Windows message record defined in section 6.2. This is not enough, we would
like to send our command string for the virtual machine [3].

Memory Mapped Files is a way of sending an arbitrary block of data
between two cooperating applications. This is done by obtaining a handle
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to a common piece of memory space from the operating system. When both
applications have a handle to this space, they may write information back
and forth to each other. The concept of Memory Mapped Files is actually
very similar to creating a disk file and writing out the data while letting the
other application open it up and read it.

We then define an ObtainMappingHandle(...) routine, that asks the
operating system for memory. If the request for memory, done through
CreateFileMapping(..) fails with ERROR ALREADY EXISTS, someone else
reserved memory before. In this case, a call to OpenFileMapping(...) re-
turns a handle to the common memory block. Since both applications will
use the same string (GPU Comm Space), they will ultimately obtain a handle
to the same memory mapped file [6].

function TForm1.ObtainMappingHandle: THandle;

begin

Result := CreateFileMapping(\$FFFFFFFF,nil,PAGE_READWRITE,

0,2000, GPU_Comm_Space);

if Result <> 0 then // Did it return a valid handle?

// Did it already exist?

if GetLastError \= ERROR_ALREADY_EXISTS then

begin

CloseHandle(Result); // Close this one - we will

// open existing one instead

Result := OpenFileMapping(FILE_MAP_WRITE,False,

GPU_Comm_Space);

end;

end;

GPU Comm Space is a string constant. The FileMappings routines hash
the value to get a memory block. All frontends and GPU hash the same
GPU Comm Space string constant to the same integer value, so that they all
share the same piece of memory.

6.5.1 Send a request to GPU

Now we have everything and can start putting pieces together. The packet
string we send to GPU will have the following format: we specify first the
name of our application (here TForm1) so that GPU can knows where to send
the result back, then the Job ID and finally the GPU command (as in [3]).
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We separate the three fields using ”:”.

Packet := ’TForm1’+’:’+JobID+’:’+ Command;

The first code line below ensures that we have a valid handle to the other
application and also have a valid handle to our file mapping. Then we open
up a view to the file with MapViewOfFile.

Think of creating the file mapping like using the AssignFile method on a
disk file and the MapViewOfFile function like using textttReset or Rewrite
on that file. The return result from MapViewOfFile though is an actual
pointer to the memory space used by the file mapping. All we need to do
now is put the string in it and let the other application know it is there. We
first copy the string to the mapped area using StrPLCopy (which just copies
the string up to a maximum number of characters).

Next we send a message to the other application telling it that a string
is waiting for it in the Memory Mapped File. You will note that we do not
actually pass any data in the lParam field of our ”string” message. The
message here is simply used to notify the other application that a string is
available. After the message is sent, we close our view to the memory mapped
file with UnmapViewOfFile [6].

procedure TForm1.SendJob(JobID, Command: String);

var

ThePtr : PChar;

Packet : String;

begin

if (GPUHWnd = 0) or (GPUCommSpace = 0) then Exit;

Packet := ’TForm1’+’:’+JobID+’:’+ Command;

{send message}

ThePtr := MapViewOfFile(GPUCommSpace, FILE_MAP_WRITE,0,0,0);

StrPLCopy(ThePtr, Command, MaxMapLen);

SendMessage(GPUHWnd, WMsgGPURequest, 0, 0);

UnmapViewOfFile(ThePtr);

end;

6.5.2 Receive an answer from GPU

We go back to the WndProc method. Here the WMsgGPUResult case has been
triggered by the incoming GPU message result. That tells us that GPU has
placed a string in the Memory Mapped File and that it is waiting for us to
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retrieve it. All we do is simply open up a view to the file with MapViewOfFile

which returns a pointer to the start of the string. We split the string in two
parts with ExtractParamString(...) in utils.pas. JobID and ResultStr

contain the result of one computation. The only thing left to do is to close
our view of the file with UnmapViewOfFile [6].

procedure TForm1.WndProc(Var TheMsg: TMessage);

var

thePtr : PChar;

IncomingString,

JobId,ResultStr : String;

begin

{handling a user defined windows message that

is a result}

if TheMsg.Msg = WMsgGPUResult then

begin

ThePtr:=MapViewOfFile(GPUCommSpace,FILE_MAP_WRITE,0,0,0);

IncomingString := ThePtr;

UnmapViewOfFile(ThePtr);

JobID := ExtractParam(IncomingString,’:’);

ResultStr := IncomingString;

end;

Inherited WndProc(TheMsg);

end;

6.6 Example: Monitoring the GPU Network

A good framework for distributed computing should offer a way to monitor
the status of the ongoing computations. GPU does it only in a primitive
way, by applying the plugin-frontend idea once more.

The frontend sends a gpustatus command to GPU, which then spreads
the command through the Gnutella network. All connected GPUs, even
if they are busy10 answer with status information; in particular, they send
back the percentage of ongoing computations, the number of jobs waiting
in queue and the other GPUs they are connected with. Further information
like Gnutella up and download traffic, IP number, node name and country
complete their report.

10the gpustatus request has high priority and is always answered even if a GPU is
computing with all three available threads.
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Figure 14: The frontend ”Network Mapper”

All answers are stored by the frontend ”Network Mapper” in a list. After
a while (2-3 seconds) a simple algorithm is started on the data; from the
IP address information, it builds a 3D graph11 on how the computers are
connected. Nodes are green solid spheres if they are idle or blue, violet and
red depending on how many computations they are executing. Connections
between nodes are plotted as lines.

For the moment, nodes are placed randomly in spheres that increase their
radius according to their incoming ticket. Later, we might want to place
nodes so that the length of connections reflect the distance between nodes12

though it requires much more complex algorithms.
Gray wire spheres are plotted by the algorithm if other nodes reported the

existence of a computer, although that computer did not explicitely answer
our status request. That answer might got lost in a network congestion,
because the node recently went down or because it is an older version that
does not implement the status request13 feature.

11a 2D graph would suffice for our purposes, but we wanted something nice to look at
12to be measured by a ping command, for example
13status request functionality is implemented since version 0.827
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6.6.1 Known problems with NAT and dynamic IP

IP v6 is the protocol that might replace the current version 4 created to
supply the increasing number of devices connected to the Internet. However,
this technology might never be established because of a cheaper technology,
called NAT (for Network Address Translation), that gives with one IP v4
number Internet access to an entire subnetwork, like the ones that can be
found in a student house or a small company. Using NAT, the old IP v4
routers can work as before, while IP v6 claims for a complete renewal of the
Internet infrastructure.

NAT uses the infrequently used source ports numbered above 2000014 to
store additional information on the local computer that sends a packet. In
TCP/IP, to answer a packet, the couple ([destination IP:Port][source

IP:Port]) is simply inverted to build an answer. Therefore, the router will
map particular ports ranges to computers on the local network.

A little disadvantage for GPU is that all users behind a NAT router
surf with the same IP number and some information is lost on how these
computers are interconnected.

Another disadvantage is caused by the dynamic IP that most ADSL
providers offer: After a period of 20 hours, the IP number changes. This
is a commercial trick to avoid having people provide web services or other
server features with these cheap connections15. Every three hours, GPUs
touch special websites to update the IP numbers they send in status request.
Meanwhile, they might answer status request wrongly. In GPU, we call these
nonexistent nodes that arise because of the dynamic IP problem ”ghosts”;
they are plotted as a wire sphere as well.

7 Benchmarks

We sent the pi job (360’000’000,pi) to clusters of different sizes, composed
by Intel Pentium III 930 MHz with 512 MB of RAM and running Windows
XP SP1. The job was sent through the ”simple frontend” in
/frontend/simple, so that the master computer was participating in the
computation, too.

Jobs were computed in µ = 45.59 seconds with a σ = 2.87. Variations
were caused by random operating system load and GPU load. Tests with

14a port is a number between 0 and 65535, processes listen for incoming packets on
particularly defined ports

15a remedy can be found at http://www.dyndns.org, that equips a server with dynamic
DNS update
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nodes outside the local network in the same city or abroad showed the same
mean, but a higher sigma: the cluster was less homogeneous and there were
faster and slower nodes.

To compute speedup, we simplify a little and plot the number of results
received versus number of computers in a cluster.

7.1 Different topologies on local LAN network

Figure 15: Topologies on Local Area Network: master node is black.

In the star topology, all computers mimic the centralized model. However,
we used a branch computer as master. All computers received their job, but
the central computer had trouble sending back results. Linear speedup was
not achieved because the central computer was overloaded and lost some
packets.

In the line topology, we have some packet losses for n > 5. For n > 8
speedup will not increase linearly anymore, but remains at the n = 8 level. In
fact, the ninth computer did not receive the job; the packet carrying the job
was discarded by the eighth GPU because its Time-To-Live counter reached
zero. Notice that TTL is set to 7 in the GPU program.

For the tree topology, we get the best results: only one packet got lost
once while running on 9 computers.

Results for the random graph topology show that GPU is still not ready
to scale: in fact we found duplicates containing the same answer. This is the
reason for the impossible super linear speedup. Therefore, we should fix the
answer mechanism for version 0.847.
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Figure 16: Speedup for the star topology

Figure 17: Speedup for the line topology
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Figure 18: Speedup for the tree topology

Figure 19: Speedup for the random graph topology
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7.2 Big clusters

First test was run using GPU 0.80x at the end of October in the room HG
E27. Results clearly show that GPUs in this version do not scale linearly:
the number of received results is growing exponentially in one of the three
series; in that series, we found one crashed GPU. In the other series, we
occasionally had a number of results greater that the number of computers
involved, this was also incorrect.

A second test at the beginning of January failed because of a router crash
in IFW C31. As support people at ETH said, GPU was not involved in the
crash, fortunately.

We run a last test with version 0.847. To reduce a little the duplicates
problem, we chose a square grid where each node is connected to 4 neighbors.
We subsequently added nodes, 21 were on a local network at ETH, Zürich,
one in a student’s house in the same city and one was in Russia from a user
who occasionally connected to the network.

In this particular 2D-grid configuration, GPU scaled quite well; some-
times we had more results, sometimes less though there was no exponential
growth of packets. GPU should scale up to a 8x8 grid with 64 computers.
Larger grids are not possible because of the TTL constraint we saw in the
line topology.

7.3 Permanent host

We ran a permanent host during the month of February 2004 in Poschiavo,
Switzerland. GPU was running on an Internet Access Point hidden from
the user’s view. All GPUs around the world automatically connected to this
node at startup; using the IP recorded in the logfile of the permanent host
we were able to tell from which country the connection came from.

We first thought that TCP/IP timeouts might shape Gnutella in ge-
ographical clusters. However, TCP/IP proved itself very reliable and we
recorded connections from everywhere, including countries like Brasil,
Malaysia, Iran, China and Japan. Gnutella is probably very close to a ran-
dom graph with no geographical clustering features.



7 BENCHMARKS 45

Figure 20: First big cluster on a random graph (January, version 0.80x).

Figure 21: Second big cluster test on a square grid (March, version 0.847)
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Figure 22: Connections from around the world to a host in Switzerland
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8 Open Source development

We opened the source code of GPU at early stages of the project. In the
beginning, we occasionally got criticism for the code’s quality. In general,
it was very difficult to involve other developers though many people helped
with documentation, support and testing. Developers did not participate
directly, but gave support for the many Open Source components employed
in GPU.

Sourceforge.net, a platform that hosts around 70000 Open Source
projects, gave to the project CVS repository, webspace, download mirrors,
task manager and bug tracker for free. The statistics compiled each day
gave a significant motivational boost: GPU was competing with professional
research projects and established Open Source solutions for clustering.

Sourceforge.net permitted advertising the project through XML feeds
and project’s news; we reached a community of interested people, from the
computer scientist to the computer’s beginner, spread everywhere around the
world.

We thank warmly Sourceforge.net staff for their commitment to the
Open Source community.

8.1 Current project status and future work

We performed a lot of work to get a stable application and still have to invest
time to eliminate bugs like the Gnutella duplicates problem. Since GPU was
released while writing [3], we have made some progress.

We plan to invest more work in the following areas: we could give to GPU
a cleaner protocol with priorities and dedicated Gnutella packets; we could
invest more time in the Linux port of GPU; the core loop of
TComputationThread could be optimized for speed; we will enhance GPU so
that plugins get strings as parameters.

Users proposed several ideas for plugins and frontends: the existing Chess
plugin could be rewritten for parallel execution; a DVD ripping farm; a Core-
Wars execution environment; distributed databases and distributed crawlers
could be interesting areas for further development.

Improvements like color maps for the Feynman-Kac frontend and a
Netmapper with real distances and node’s names complete the picture.

8.2 Conclusion

GPU shows with a prototype that distributed computing is feasible on a Peer-
To-Peer network if we employ randomized algorithms. The plugin-frontend
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paradigm with GPU as a middle layer arises because we want all users not
only to compute but also to send computational requests. A cooperative
multithreading is used to display graphics only if needed: if the plugin window
is not visible, we save CPU-time.

As an example, we implemented a plugin-frontend couple that solves a
partial differential equation on an elliptic domain with a random walkers
approach [1].

According to benchmarks, GPU scales up to about 64 computers in a
particular 2D-grid configuration where each node has degree 4. In a random
topology, the duplicates problem is still present and should be fixed in order
to achieve the normal Gnutella scaling.

Some theoretical considerations are attempted: in particular, we discuss
the coupon collector problem [27,28] and we give an estimation for the small
world problem using fractal theory [24,25,26].

As final note, we remark that in most cases, it is not the lack of resources
that stop us from using the CPU-power of so many idle computers, but the
difficulty to implement parallel algorithms that produce meaningful results.
Computations have a strong serial nature, indeed.
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