
GPU, Framework Extensions for the Distributed

Search Engine and the Terragen Landscape

Generator

Rene Tegel and Tiziano Mengotti
Technical report

GPU Development Team

August 20, 2005

1 INTRODUCTION 2

Abstract

This document describes new features introduced in the GPU network,
a framework for distributed computing based on the Peer-to-Peer network
Gnutella, and soon on a new protocol called Pastella.

Frontends and plugins are now able to communicate with the main
GPU application using UDP/IP channels. Frontends and plugins can now
listen for broadcasts and get packets even if they are not explicitly in-
tended for them. Frontends can also provide a webinterface for the sub-
mission of queries by users who are not running the GPU application.
Plugins accept strings as parameters and send back partial results, while
they are computing. Most features were introduced to support the Dis-
tributed Search Engine, a plugin/frontend extension of the network to
index webpages using crawlers.

The framework is now able to generate artificial landscape videos using
Terragen [8], a photo-realistic landscape generator. A new application
launcher plugin and a wrapper to download and upload the frames back on
a central server are described. These frames are then merged together into
videos, which become photo-realistic fly-byes of the generated landscape.

Finally, we discuss new ideas turning the broadcast-based framework
into an agent-based infrastructure.

1 Introduction

This document is intended for developers, who would like to experiment with the
advanced features of the GPU1 network. Newcomers first should take a look at
[3,4,5] for an introduction to the GPU framework. The framework extensions
described here were made possible by the VisualSynapse [1] and Synapse [2]
libraries. These libraries provide Delphi components for UDP, TCP, HTTP and
several other protocols.

Chapter one explains how frontends2 capabilities were improved since the
publication of [5]. They communicate now with the main GPU application us-
ing UDP/IP channels, in addition to message passing and shared memory [5,6].
Communication through UDP is more straightforward. It will easier cross plat-
form development and will enable other programming languages to speak with
GPU. Additionally, plugins are allowed to use the UDP/IP channel to submit
own queries and receive results, too.

Frontends and plugins can register for network broadcasts. Doing so, they
can get messages intended for the entire network. The Network mapper uses
this feature to improve its efficiency. Chatbot plugins can listen for messages
on chat using the same mechanism.

Chapter two describes improvements made to plugins. Plugins are now able
to accept strings on the stack and are not limited to real numbers anymore.
An application launcher implemented as plugin enables GPU to execute batch
jobs. As an example, we provide wrappers for the Terragen plugin, a landscape
generator that can run on a GPU cluster.

1Global Processing Unit or Gnutella Processing Unit
2A frontend is an application that interfaces to the GPU main application. It is intended

to visualize results and submit new jobs.

2 FRONTEND IMPROVEMENTS 3

Figure 1: Some minor changes introduced into the framework - the Feynman-
Kac frontend supports colors, Netmapper displays up to 40 connected comput-
ers. The chess system still does not work in parallel, unfortunately.

Plugins can send back multiple results while they are computing as well.
The Distributed Search Engine described in chapter three extensively uses these
feature to send back partial results, while it scans the database for web pages
matching the query.

Chapter four gives insights in how to use the color maps to plot points, describes
how to build local clusters and describes in detail the autoupdate system.

Chapter five discusses new ideas on getting a much more efficient transport
protocol called TPastella [1] (based on Distributed Hash Tables[reference here].
Additionally, we show an agent based extension for the framework, which might
overcome some inherit limitations of GPU in respect to job distribution.

In the conclusion, we give statistics for the cluster and discuss directions for
future work.

2 Frontend improvements

2.1 Frontend Communication through UDP/IP

We describe here, how a frontend can ask GPU to distribute jobs and then
listen for results3 using UDP/IP packets. These connectionless channels allow
programmers of different languages and platforms to write frontends and un-
derstand how communication with the main GPU application. In fact, UDP/IP
is a very common protocol and most languages provide libraries to use it. For

3One way to do so using windows messages is described in [4]

2 FRONTEND IMPROVEMENTS 4

Figure 2: UDP/IP Gate - Besides the Windows message gate, a new UDP/IP
gate is introduced in GPU to allow communication with the core client.

example, implementing a UDP/IP channel in Java should not be more than 10
lines of code.

2.1.1 General proceeding

The main GPU application listens on port 27077 for incoming UDP packets. This
port number is defined as constant GPU UDP PORT in common.pas. The frontend
listens on some other port, defined by the frontend’s developer.

UDP is a protocol built on top of IP and therefore it contains a source and
destination address. The address is a couple (IP/Port). To communicate with
GPU, the frontend creates a packet with (localhost/27077) as destination
address and (localhost/frontend port) as source address. The packet con-
tains the GPU command in a simple format described later. The packet is
sent to the main application. The main application spreads the packet through
the network, and connected computers will start returning results to the main
application as usual.

When results come in, the main application builds UDP/IP packets directed
to (localhost/frontend port). In this way, results reach the frontend. The
results are then edited or visualized by the frontend as final step.

2.1.2 Format for request and result

The format for a request is very simple. It is a string with three fields separated
by a colon.

The first field is normally set to 0. GPU spreads the job through the network,
then. If the first field is 1, the job is only executed on the local machine. The
second field is the job ID number of the packet; the third field is the GPU
command itself.

Format: Is Local:Job ID:GPU command

Example: 0:1500:1,1,add

2 FRONTEND IMPROVEMENTS 5

Results sent back by GPU do not have the Is Local field.

Format: Job ID:GPU Command

Example: 1500:2

2.1.3 Frontend Communication with Delphi and Visual Synapse com-
ponent

In the following, we limit ourself to the Delphi [7] environment. Additionally,
we assume that the Visual Synapse [1,2] component is already installed into the
Delphi environment. Please refer to [1] for information on how to install the
Visual Synapse component.

A frontend listens on a developer’s defined port, for example port 27078
as simple udp.pas in directory frontend/simple-udp does. To achieve this,
we drop the VisualSynapse [1] component called TVisualUDP on a new Delphi
form.

In the Object Inspector window, once the new TVisualUDP component is
selected, we set the property BindAdapter to 127.0.0.1, the IP address for
localhost that represents the local computer. The BindPort property is set
to the listen port of the frontend, freely chosen by the developer, 27078 in our
case. Finally, we give a distinct name to the component by setting the Name
field to SynapseUDP.

2.1.4 Receiving results from GPU

The routine that handles incoming results sent by GPU is the event of TVisualUDP
called OnData. It is enough to set this event, no more events should be defined.
Here a simple example on how the routine for OnData could look like.

procedure TSimpleForm.SynapseUDPData(Sender: TVisualSynapse; \\
Handle: Integer; Data, Query: String; From: THostInfo); \\
var JobID : String;

begin
JobID := ExtractParam(Data,’:’);
GPUResultEdit.Text:= Data;

end;

The Data parameter contains the entire string in the way GPU sends it,
defined in the previous section. The method ExtractParam(...) defined in
utils.pas writes in the variable JobID the first part of the string up to the
delimiter :. Data contains the rest of the string without delimiter. The result
is then showed in a TEdit component called GPUResultEdit.

2.1.5 Sending a command to GPU

To send a command to GPU, the following method is proposed:

uses common.pas
...
procedure TSimpleForm.SendUDPCommandToGPU(JobID, Command : String);

2 FRONTEND IMPROVEMENTS 6

var S : String
begin

S := ’0’+’:’+ // 0 will spread command to all
// connected GPUs,

// 1 only to this machine
JobID+’:’+Command;

SynapseUDP.Connect(’localhost’,GPU_UDP_PORT);
SynapseUDP.SendTo(’localhost’, GPU_UDP_PORT, S);
end;

The two routines Connect(...) and SendTo(...) create and send a UDP
packet to GPU containing the computational command.

To send a simple command, one can call for example:

SendUDPCommandToGPU(’100’,’1,1,add’);

2.2 Registering a frontend to network broadcasts

Currently4, there are two broadcast services offered by the network. For these
two services, the broadcasting is done by the GPU core client itself. Plugins
can offer broadcast services using partial results. We will describe this technique
later in this document.

One service is a string containing some status information of participating
computers. Each two minutes, the GPU core client broadcasts its status infor-
mation, including communication status (IP, connections, traffic load), virtual
machine status (jobs, percentage of jobs, number of jobs in queue) and physical
status (MHz, RAM, result of speed benchmark using FFT routines, collected
data of crawlers in megabytes). The job id of this service is set in constant
NETMAPSTATS BROADCAST in common.pas. The frontend that listens to these
messages is the 3D Network mapper in directory frontend/netmapper. This
frontend has to register for the job ID NETMAPSTATS BROADCAST.

To listen for the job ID 100, one types

SendUDPCommandToGPU(’100’,’register’);

using the routine previously defined. The same approach works with window
messages as well. If a frontend closes, it should unregister itself with

SendUDPCommandToGPU(’100’,’unregister’);

Note that on these two commands, the Is Local field is always forced to
1. In fact, both the register and unregister command are never sent to the
entire network, for obvious reasons.

2.3 Plugins can use the same UDP/IP channel to submit
and receive results

Plugins can use the UDP/IP channel to submit queries and receive results, as
well. A good plugin example can be found under dllbuilding/chatbot echo.

4in version 0.910

2 FRONTEND IMPROVEMENTS 7

Figure 3: Netmapper frontend listens for Network Broadcasts. Connection load
is displayed with a heating color map.

The plugin registers for the service CHATBOT BROADCAST, so that it is notified of
chat entries on chat channels of the GPU client.

The example uses the non-visual version of Synapse to submit queries. The
defined UDP socket sends data to the GPU UDP PORT and is bound to another
listening port. A thread is instantiated, each time it gets data through the
listening port, it resubmits it to the GPU UDP port.

Therefore, the chatbot echo plugin acts like a parrot which repeats sen-
tences on chat channels. Activating two parrots on the network, and sending
an initial sentence can produce an interesting avalanche effect.

The following source code shows how to use SynapseUDP without dropping
visual components on a form (DLL’s do not have such a form).

var
thread : TUDPEchoThread;

...

thread := TUDPEchoThread.Create(false);

constructor TUDPEchoThread.Create(CreateSuspended : Boolean);
begin
...
udpcon := TUDPBlockSocket.Create();

2 FRONTEND IMPROVEMENTS 8

udpcon.Bind(’127.0.0.1’,’31255’);
end;

procedure TUDPEchoThread.Execute;
var res,

channel : String;
begin
sendmsgtogpu(CHATBOT_BROADCAST,’register’);

while not stop do
begin
res := udpcon.RecvPacket(1000);
...
sendmsgtochannel(res);

end;

sendmsgtogpu(CHATBOT_BROADCAST,’unregister’);
end;

procedure TUDPEchoThread.sendmsgtogpu(jobid, msg : string);
begin
if udpcon = nil then Exit;
udpcon.Connect (’127.0.0.1’, GPU_UDP_PORT);
udpcon.SendString (’0:’+jobid+’:’+msg);

//0 means sending message to all gpus
end;

procedure TUDPEchoThread.sendmsgtochannel(msg : String);
begin
sendmsgtogpu(’1’,’chatbot:14:’+msg); //jobid does not matter here

end;

dllbuilding/aibot is a more complex chatbot which uses markov chains
to build complex sentences and is compiled into gina.dll. To test Gina, cre-
ate a text file (say about 2 MB) containing books of your favourite writer or
scientist. As an example, take some Einstein’s books and create a text file
Einstein.brn5 With the GPU command gina enable, you activate Gina and
with 10, ’Einstein’, gina brain you’ll send Gina through the books. After
some minutes, Gina will have built a markov chain net of Einstein’s book and
will be ready to speak with anyone on chat channel 10.

2.4 Adding a webinterface to a frontend

Webinterfaces allow GPU to offer services to users who cannot run a GPU on
their computer.

A frontend, like the Distributed Search Engine described later, can easily
implement a THTTPServer provided by the VisualSynapse [1] libraries. This
frontend becomes therefore a webserver listening on port 80.

5.brn extension = brain

2 FRONTEND IMPROVEMENTS 9

Figure 4: Webinterface of the Distributed Search Engine - Users can use a
webbrowser (here e.g. Konqueror) to access GPU services, even if they do not
run a copy of GPU on their computer.

Users can browse the webserver with an usual Internet browser and in-
teract with the frontend, although they do not run a GPU on their com-
puter. To activate the webinterface of the Distributed Search Engine, run first
searchfrontend.exe, go to panel Web service configuration and check Enable
webserver. Now open a browser and point it to http://127.0.0.1.

2.4.1 Using THTTPServer

This and the following subsections are taken from [1]. To get a webinterface
inside any application (frontend or not), it is first necessary to instantiate the
THTTPServer, give it a hostname, tell the port to listen to. Then one should
map directories, PHP (or other preparsers) and CGI directories. It is possible
to map those against a specific host name6 or to any hostname, by leaving the
’domain’ empty. Each virtual host can have it’s own set of CGI directories,
preparsers etc.

2.4.2 Multiple virtual directories

It is possible to map several virtual directories, although care is needed if direc-
tory names overlap. As an example, assume this structure on disk:

c:\web
c:\web\downloads
c:\files

6Virtual Hosts

2 FRONTEND IMPROVEMENTS 10

We would like to map the directories on the webserver as follows:

c:\web => /
c:\files => /downloads

At this point, there is a virtual directory downloads that is mapped to two
locations. As rule of thumb, the first mapping counts, and will be used to parse
files. In this case, downloads will point to c:/web/downloads.

2.4.3 Recursive mapping

By default, folders are mapped recursively7.

2.4.4 Configuring the server

We give here a simple example, on how to instantiate a THTTPServer.

H := THTTPServer.Create (Self);
H.ListenPort := ’80’;
H.Active := True;
H.SupportedProtocols := H.SupportedProtocols + [hpConnect, hpPost];
H.AutomatedProtocols := H.AutomatedProtocols + [hpConnect, hpPost];
H.RegisterCGI (’c:\www\scripts’, ’/scripts/’);
H.RegisterDir (’c:\www’, ’/’);
H.RegisterDefaultDoc (’index.htm’);
H.RegisterDefaultDoc (’index.php’);
H.RegisterPHP (’c:\bin\webtools\php\php.exe’, ’.php’);
H.RegisterManualURL (’/test’);
H.OnGet := OnGet;

This section is intended to give an overview on webinterfaces. Please check
[1] for the latest documentation.

7Care on Unix based systems is required. There is no ’follow symlink’ check yet, so the
reader should avoid endless loops inside the directories

3 PLUGIN IMPROVEMENTS 11

3 Plugin improvements

3.1 String as parameters for the virtual machine

Since version 0.860, the TStack record in gpu component/definitions.pas
is modified. It contains now an array of PChars8 to keep compatibility with
standard Windows dlls.

In consequence, plugins can take strings as parameters, push or pop them
on the stack, and return them.

We described in [4], how the plugin basic.dll contained simple GPU com-
mands like mul to multiply real numbers. Similarly, the plugin strbasic.dll
contains simple routines intended for basic operations on strings. Its source
code can be seen in the directory dllbuilding/strbasic.

3.1.1 Examples from the user’s perspective

We look here at the simple examples that come along with GPU. From these
examples, the reader should be able to infer how the stack works.

The virtual machine understands strings only if enclosed by simple quotes
(’). Hello is not a string for GPU, but ’Hello’ is.

• ’Hello’,’World’,concat
Command concat takes two parameters, concatenates them and returns
’HelloWorld’.

• ’5’,’123456789’,substr
Command substr returns the position of the first parameter into the
second parameter. In this example, the number 5 is returned. If the first
parameter is not found in the second, 0 is returned.

• ’gpu is cool,8,4,copy’
This command copies part of the first parameter, beginning from position
8 to a length of 4 chars. The result is ’cool’.

• ’Do’,’ not’,concat,’ drink’,concat
The virtual machine evaluates this command from left to right. The first
concat returns ’Do not’ on the stack. The result is understood as first
parameter to the second concat. The outcome is then ’Do not drink’.

Plugin strbasic.dll understands additional commands like insert, delete
and length. Examples of these can be seen in the combo box near the
Compute locally and Compute globally buttons.

The ability to handle strings is already used in the Distributed Search En-
gine and might be important to overcome the packet distribution problem
described in the last chapter.

8PChars are C-style strings; they are a simple pointer to a null terminated string. In
contrast, Delphi strings are an array of chars where the first element contains the length of
the string.

3 PLUGIN IMPROVEMENTS 12

3.1.2 Examples from the developer’s perspective

As we know from [4,5], a function defined in a plugin takes a record TStack as
argument. This argument is passed by reference: any change the function will
do on the record will stay persistent: other functions might be called with this
modified stack, or simply the modified stack is shown as result by GPU. The
method signature for any command looks as follows:

function concat(var stk : TStack):Boolean;stdcall;

The TStack record contains three important fields: StIdx contains the po-
sition where the function should perform changes, Stack is an array containing
MAXSTACK (constant defined in gpu component/definitions.pas) real numbers
and PCharStack is an array containing MAXSTACK pointers to strings. In conse-
quence, StIdx should be in range 1 to MAXSTACK or zero if the stack is empty.

TStack = record
StIdx : LongInt; // Index on Stack where Operations take place
Stack : Array [1..MAXSTACK] of Extended;
PCharStack : Array [1..MAXSTACK] of PChar;

end;

Adding a real number to the stack should be done as follows. First we check
if we the stack is not already full, we then add one to StIdx, we modify the
Stack at the position StIdx. Additionally, we make sure PCharStack contains
a nil pointer (should we also free memory here?).

function load_number_5(var stk : TStack):Boolean;stdcall;
begin

Result := false;
if stk.stIdx >= MAXSTACK then exit;
stk.stIdx := stk.stIdx + 1;
skt.Stack[stk.stIdx] := 5;
if stk.PCharStack[stk.stIdx] <> nil then FreeMem(stk.PCharStack[stk.stIdx]);
Result := true;

end;

To load a string on the stack, we check again if the stack is not already full, we
reserve memory with getmem(...) at the address stored into the PCharStack
pointer in the array at position stk.stIdx. We copy the normal Delphi string
S into the freshly reserved memory with a call to StrPCopy(...). Finally, we
delete any number in the Stack array by setting its value to infinity (INF).

inc (stk.stIdx);
if stk.stIdx >= MAXSTACK then Rxit;
getmem (Stk.PCharStack [stk.stIdx], length(S)+1);
StrPCopy (Stk.PCharStack [stk.stIdx], S);
skt.Stack[stk.stIdx] := INF;

In the following, we see the concat function of the strbasic.dll plugin. A
non thread-safe variable temp is used to store the concatenated string. In this
way, collisions might result. It is better to use getmem to reserve memory for
the tmp string.

3 PLUGIN IMPROVEMENTS 13

var tmp : String;

function concat(var stk : TStack):Boolean;stdcall;
var

Idx : Integer;
begin
Result := False;
Idx := stk.StIdx;

{check if enough parameter}
if Idx < 2 then Exit;

{check if both parameters are strings}
if not (Stk.Stack[Idx-1] = INF) then Exit;
if not (Stk.Stack[Idx] = INF) then Exit;

tmp := StrPas(Stk.PCharStack[Idx-1])+
StrPas(Stk.PCharStack[Idx]);

Stk.PCharStack[Idx-1] := PChar(tmp);

stk.StIdx := Idx-1;
Result := True;
end;

3.2 Sending partial results from a plugin

untSearchThreads.pas under /dllbuilding/gpuse

Stk.SendCallback (@Stk);

3.3 Broadcasting from a plugin

3.3.1 How to use broadcasting in genetic algos

explain here how genetic algos can profit by broadcasting their best individuals
together with the corresponding fitness score

3.4 Identification commands

The virtual machine intercepts special commands that ask the client for identifi-
cation, since the philosophy of the platform is that plugins should stay unaware
of their environment.

• nodename: this command returns the node name as set by the user

• team: it returns the team the user belongs to

• country: the country code as set by the user is returned

• IP: returns the outside IP number that GPU detects

• opsys: returns the operating system GPU detects

3 PLUGIN IMPROVEMENTS 14

• version: returns GPU’s version numbers

• MHz: returns computer speed in Megahertz

• RAM: returns how much physical memory is on board

These identification commands are useful: sending MHz to the cluster will
return in the sum field the current power of the cluster. Similarly, RAM will
return the amount of physical memory in the cluster.

By using the GPU Packet logger in frontend/simple, it is possible to iden-
tify clients who did some computation. For example, sending 3600000,pi,nodename,MHz
will return results like 3.1417,oleander,1400 and 3.1411,iron-linux,1800.

Identification commands play a role in the last chapter as well.

3.5 Application Launcher

Plugin applaunch.dll was introduced in the framework to execute external
programs that take parameters and work as a batch process. To avoid security
flaws, the plugin does not accept paths with slash or dots: only .exe programs
located in the directory /binexec are executed.

Syntax for the plugin is:

’param3’, ’param2’, ’param1’, ’thunder’, launch

This means that the program thunder.exe located in the subdirectory
binexec of the main GPU application is started along with parameters param1,
param2 and param3.

This is equivalent to open a DOS window, move with the command cd to
c:/Programme/GPU/binexec and execute there thunder param1 param2 param3.

As we will see in the next example, the executable is typically a wrapper
to some other external application located in the subdirectory of sandbox. Re-
member that before being released on autoupdate or as a package, plugins are
extensively tested to minimize potential security flaws and that the decision to
autoupdate always is left to the user.9.

3.5.1 Example: The Terragen Plugin

Terragen[8] is a scenery generator, created with the goal of generating photo-
realistic landscape images and animations. Terragen is free for personal, non
commercial use. Although Terragen is a continually evolving work-in-progress,
it is already capable of near-photo-realistic results for professional landscape
visualization, special effects, art and recreation. Terragen has been used in a
variety of commercial applications including film, television and music videos,
games and multimedia, books, magazines and print advertisements[8].

At time of writing, it is possible to use the GPU cluster to render images
using Terragen and in a distributed fashion. An additional program is still
required to merge frames together in a video, at the end.

GPU comes along with Terragen files installed under the directory sandbox.
In directory binexec, an additional GPU wrapper program called earthsim.exe

9GPU developers are aware that a virus or Trojan horse might hurt the research network
hardly and that these kind of programs take penal consequences with them

3 PLUGIN IMPROVEMENTS 15

Figure 5: Artificial landscape - This picture was generated in about 4 minutes
on a Pentium III 1 GHz with Terragen, a landscape generator. The applaunch
plugin can run Terragen on a GPU cluster and therefore calculate many frames
at once.

is able to download and upload files from a central FTP server, and to pass
parameters to the main terragen.exe application stored in sandbox directory.
Finally, the application launcher applaunch.dll will mediate between the main
GPU application and earthsim.exe.

In the beginning, a launch command is issued to execute the GPU wrapper,
either locally or globally as usual. The GPU wrapper earthsim.exe attempts
to contact a FTP server and downloads configuration files for terrain, sun and
camera position for all frames that compose the video. It then randomly de-
cides to render one of the frames out of the available ones, and uploads back
on the FTP server an empty image xxxx.lock file, to signal to other clients
that frame xxxx is being computed, avoiding double work. Once the image is
downloaded, the wrapper launches the true terragen.exe program and lets it
compute in batch modus, minimized in a DOS box. The computation can take
from minutes to hours, depending on the image resolution and on several other
factors, including terrain files and water rendering. Finally, the computed im-
age is uploaded to the FTP server and is available for further processing: for
example, to be glued in a video.

A frontend for Terragen is provided as well; However, we will describe how
to setup a project manually, here. If you are a terragen artist, read further.

3 PLUGIN IMPROVEMENTS 16

Figure 6: Terragen Frontend - The Terragen frontend is able to display FTP
server contents and overall progress for one particular project.

How to setup a terragen project As first step, it is necessary to log on on
a ftp sever anonymously10, for example on ftp.dubaron.com:5555. Then, one
should create a new folder in the main directory of the FTP server. The name
of the folder is the project name! In this new folder, the following files should
be uploaded, and their name must exactly match.

terragen.tgs
terragen.tgw
terragen.ter (optional)

At ftp.dubaron.com:5555, in the directory test, there are some sample
files, too. It is now time to Configure the tgw nicely. At best, the reader should
get documentation from [8]. Reference good starting point!

Generally speaking, a job should not last longer than about 2 hours to take
in account older computers like PIII-500MHz (2004). Also, beware to set a
proper buffer size in the terragen project. 16MB are reasonable, 32 optional.
The 64MB set by default are somewhat high (2004).

Once the ftp server is set up correctly, it is time to run GPU and tell the
clients about it.

In GPU, go to commands and execute the following command globally:
’5555’, ’ftp.dubaron.com’, ’project1’, ’terragen’, launch

The explanation of the command is straightforward, if read from right to
left:

• launch - the actual command. It tells the GPU wrapper to search for
executables in binexec directory with the name of left parameter.

• ’terragen’ - name of the executable in binexec. It will automatically be
transformed into ’terragen.exe’. If you need to adjust behavior by writing
a batch file, take care that exe files are searched first.

10At the moment, all ftp access is done anonymously. In future, maybe client may look for
account terragen

4 DISTRIBUTED DATABASES: THE DISTRIBUTED SEARCH ENGINE17

Figure 7: Distributed Search Engine - we see the crawler in action. Pages are
indexed and stored in a MySQL database for later retrieval.

• ’project1’ - the name of your project. It must exactly match the folder
name on the ftp server.

• ’ftp.dubaron.com’ - the ftp server where project files are.

• ’5555’ - the port number of this ftp server. If omitted, port 21 (default
ftp) is assumed.

As final note, remember that on succesfull upload, the lock file is removed
and the local computed bitmap deleted. A lock file indicates then a computation
which was interrupted in the middle. To receive the missing images, one can
delete all lock files and issue the launch command again.

With the Terragen frontend, it is possible to send out this command in
periodic intervals. Typically, to generate an entire video of two minutes, it
takes from two days up to a week.

4 Distributed Databases: The Distributed Search
Engine

The Distributed Search Engine is the most complex extension GPU currently
has (2004). Its development drew the development team into new fields. Im-
provements like string parameters, partial results and UDP/IP channels up to
web interfaces turned out to be essential, in order to get the system running.

Although with many limitations, in particular search speed11, a more ad-
vanced system like the proposed Distributed Search Engine (shortly DSE) could
provide a search engine difficult to shutdown in its decentral nature and diffi-
cult to censor or manipulate12. Automatic censorship against hard pornography,

11typical answer time is twenty-thirty seconds. As a comparison, the search engine Google

answers in half a second
12a search for Linux on Microsoft Network returns Unix-¿Windows migration tools as first

entries (2004)

5 ADDITIONAL DOCUMENTATION 18

crime and political extremism could be integrated in the client.

4.1 Description

As any complex GPU extension, the DSE is composed by two pieces: a plugin
charged with the tough ”computation”, in this case the crawling, indexing, stor-
ing and retrieval of webpages, and a frontend charged with the ”visualization”,
to present the plugin’s work in a human readable form.

This extension allows GPU to crawl the web and index it using a SQL
database. Users can then search each database created independently by GPUs
for strings contained in the website or in the URL.

Using the search frontend, the user first submits to the crawler initial web-
sites (Submit URL tab). Then, the user can enable a different number of
crawlers. After selecting a place for the database, local statistics will show the
visited URLs and display graphically statistics about CPU and network band-
width usage. The new GPU command crawlostones will return the number of
megabytes crawled by the local GPU (Compute locally button) or crawled by
the entire GPU network (Compute globally button).

Experienced users can download an optimized plugin that uses mySQL in-
stead of SQLlite for better performance. The plugin should be placed in the
subdirectory /plugins of GPU and the file search plugin.dll should be re-
moved from there.

The signature of the crawler is
Mozilla/4.0 (compatible; GPU p2p crawler http://gpu.sourceforge.net/search engine.php)

and can be sometimes seen in statistics of visited pages.

5 Additional documentation

5.1 Local cluster configuration

Warning This describes the behavior of versions around 0.890 and might
change in the future. In particular, GPU already implements GWebCaches [11].

In general, each GPU looks at the file gpu fix.txt to find entry gates to
the network. Each minute, the GPU client tries to establish a connection to
each computer listed in the file. A typical gpu fix.txt looks like this:

spartacus.is-a-geek.net
nanobit.is-a-geek.net:6543
129.132.12.72
129.132.12.73:4444

The files contains therefore DNS names or IP numbers. If a port is not
specified with :, the default Gnutella port 6346 is taken. We emphasize that
GPU will sweep through gpu fix.txt once a minute and attempt to establish a
connection to each computer described in each line. GPUs know each other also
by broadcasting PINGs through the network. One can use the ’Disable GPU
discovery’ option to suppress PING broadcasting.

In order to create a local cluster, you could simply replace gpu fix.txt with
a list of valid computers in your local environment. At best, you will choose the

5 ADDITIONAL DOCUMENTATION 19

fastest computers as entry gates for the network. Additionally, GPUs will know
each other through the initial entry gates and attempt connections to other
clients on the local cluster.

Alternatively, one can first disable the ’Connect to GPU net’ checkbox on
all GPUs and add connections manually using the Connect button. However,
TCP/IP connections tend to break down after a while, so that this method is
not recommended anymore.

As final remark, if the local network should be optimized for speed, it is good
idea to design gpu fix.txt files such that the local network stays tree-like. On
the contrary, if the network should be resistant against failures, recall that a
k-connected network with k >= 2 stays connected even if k + 1 nodes fail.

5.2 Color maps

Color maps were ported from C [9] to Delphi. The library is available as Delphi
unit and C file .c,.h under libraries/colormap.

The library translates a floating point number between 0 and 1 into a
(R,G,B) triple of values in range 0 to 1 again. One might need to multiply
that value with 255 in some cases. Depending on which color map is selected,
the triple of values is different. Internally and for each color map, the input
value in range between 0 and 1 is interpolated using three different linear func-
tions (one for R, G and B channel). These functions were taken from the program
Deep Space Nine [10].

In order to use colormaps one should first define a TColorMap object. At the
end, in a procedure like FormClose, the object should be freed.

uses colormap;
...
var CMap : TColorMap;
...
CMap := TColorMap.Create;
...
CMap.Free;

The appropriate color map is selected with LoadColorMap(). Doing so, the
internal interpolation functions are changed. Allowed maps are GREY MAP, B MAP,
HEAT MAP, COOL MAP, BB MAP, HE MAP, A MAP, RAINBOW MAP and STANDARD MAP.

CMap.LoadColorMap(COOL_MAP);

Finally, to convert the value into RGB, we use GetRGB().

uses Dialogs;
var Color, R, G, B : Real;
...
Color := 0.3;
CMap.GetRGB(Color, R, G, B);
ShowMessage(FloatToStr(R) + ’ ’ + FloatToStr(G) + ’ ’ + FloatToStr(B));

{this writes a line in OpenGL with the interpolated color}

5 ADDITIONAL DOCUMENTATION 20

glBegin(GL_LINES);
glColor3f(R, G, B);
glVertex3f(0,0,0);
glVertex3f(1,1,1);
glEnd;

5.3 Autoupdate mechanism

Current autoupdate implementation is very simple and straightforward, al-
though some work is required from developer side. On the other side, the
update system is not really powerful: rollbacks, branches and similar are not
implemented. The autoupdate mechanism arisen from the need to quickly fix
a release done through sourceforge. The releasing process on sourceforge can
require up to 3 quarter hour. Repeating everything because of a wrong detail
which compromised the network was quite common, until autoupdate came with
release 0.815.

A list of files which changed is stored on a central FTP server with known
address, its name is update.txt.

A typical update.txt looks like this:

0.9073 , New version number after performed update

0.828 , glut32.dll
0.836 , plugins\teapot.dll
0.836 , cleancode.bat
... , ...

0.860 , mkdir plugins\input
0.863 , del plugins\piproject.dll
0.885 , frontend\simple\simple.exe
0.9072 , gpu.exe
0.9073 , messages.txt

This list is downloaded by the autoupdate program. The first line of update.txt
advertises the latest experimental release. Autoupdate downloads an additional
file, gpu version.txt where the latest stable version is mentioned at the top.
Depending on user’s settings, autoupdate will choose either update.txt’s exper-
imental version number or the normally lower gpu version.txt’s stable num-
ber. Autoupdate checks if the current version stored in gpu.ini is lower than
the stable or experimental version depending on user’s settings. If not, the
program exits with a nothing to be done message.

Autoupdate closes all running instances GPU and of frontends like Net-
work Mapper and Terragen frontend, e.g. Reason for this is that overwriting a
running application is not allowed by the operating system13. All files between
current version and target version are downloaded from the ftp server and stored
relatively to the GPU path. Finally, the current version in gpu.ini is set to the
new stable or experimental version, respectively.

13In order to update the autoupdate program a file called updater2.exe is downloaded.
Once autoupdate closes and runs GPU, GPU detects the file {textttupdater2.exe and renames
it into updater.exe.

5 ADDITIONAL DOCUMENTATION 21

Checking ’force autoupdate’ option will change autoupdater behavior: the
test if the version number is lower is skipped. This option is used by developers
if short development iterations are needed.

5.4 Job Modifiers

GPU introduced job modifiers to be added on the command string like ”chat-
bot:14:”. That command means the command is redirected to the channel 14
of the chat system.

Three additional and useful modifiers are ”user:¡username¿:”, ”team:¡teamname¿:”
and ”country:countrycode:”. They narrow the job request to special users,
teams and countries. This can be used to build an instant message system
on top of GPU and in general to send direct commands to other computers.
Internally, the command is still broadcasted to everyone, but only clients with
the matching code will react.

As an example, if one wants to send the job 1,1,add only to the com-
puter gemini, he/she should type user:gemini:1,1,add and then click on the
Compute globally button.

5 ADDITIONAL DOCUMENTATION 22

5.5 Cluster behaviour

In the following, we see performance for the cluster in a span of about three
months. Each day, a snapshot of the cluster was taken. The first image shows
how many computers were online, their total amount of gigahertz by adding up
individual processor speeds and the total amount of RAM. The second image
shows the speed measured by an internal FFT routine in fftplug.dll on each
computer when the GPU program starts up. This number reflects better the
real performance of a computer, taking in account speed between processor and
memory. The third image shows how big the database of the search engine
described previously was (in gigabytes). The fourth image is a report for each
computer of the amount of images computed with Terragen.

5.5.1 GPU Cluster statistics between 08.11.2004 and 06.01.2005

6 TPASTELLA AS GENERAL COMMUNICATION LAYER FOR P2P 23

6 TPastella as general communication layer for
P2P

[12] Following still very rough: What is pastella
Pastella is an alternative p2p protocol, just like gnutella is. the main goal is

to perform network optimalization, at the cost of some memory power and cpu
cost for some intelligent caching and hashing. It’s design goals are: less network
overhead, avoidance of redudant data. good broadcast support. minimalization
of packet loss. host-to-host routing by other hosts. walker and agent support.

What is TPastella
TPAstella is an object pascal implementation of the Pastella protocol. It is

a simple component, build on the Visual Synapse Server library base.
Why is it called Pastella?
Well. there are several fantasy-rich theories about that. For example, that

we replaced the GNU from GNUtella to PAStella to honour the language Pascal.
Where can i download pastella? You can fetch latest version from CVS,

generally the preferred method. It is also part of the Visual Server distribu-
tion. Both can be found at sourceforge files section, visual server package:
http://sf.net/projects/visualsynapse

7 Future development ideas

7.1 Turning the broadcast framework into an agent frame-
work

GPU already includes a file transfer system offered by the TGnutella component,
a PGP component to verify integrity of files and logic to load and unload plugins
at runtime.

7 FUTURE DEVELOPMENT IDEAS 24

Naturally, one might think of a collection of routines, an API offered to plu-
gins, so that they can move through the network in an agent-like manner. This
API might include calls like MoveToTarget(NodeIP : String), CopyToTarget(NodeIP
: String), GetNetworkTopology : TIPNodeGraph.

Once a plugin issues a MoveToTarget(...) call, the GPU will charge itself
with the file transfer to the target node, the loading of the plugin at the target,
after verifying with PGP that it was not changed to run malicious code. If all
operations were succesfull, GPU should then unload the plugin which issued the
request.

MoveToTarget() would then mimic the weak transition paradigm, where
binary code is moved through the network. However, the internal plugin status
(process counter, stack, heap) is not copyed to the target.

The GetNetworkTopology(...) call should return a graph of the current
network, and particularities of the nodes, in a similar way the network mapper

8 CONCLUSION 25

Figure 8: GPU as a platform for agents - A missing API might give plugins the
possibility to move around the network.

already does. Using this call, plugins can decide if and where to move.
The CopyToTarget(...) call might be used to establish a cooperative net-

work of plugins. Using broadcast services and normal network traffic they might
exchange internal status information. CopyToTarget() could be used to spread
new plugins or updated plugins through the network without needing autoup-
date services. Other calls like MoveToRandomTarget() should then use the

three previous routines as building blocks.

As an idea, the GPU framework could run a competition of plugins, which
should visit as many nodes as possible no the network, and then return back to
the initial node.

Such plugins might be named agents, although literature does not seem to
imply that an agent is software which moves from one computer to another.
Agents could be used for non-critical jobs like collecting statistics and searching
for particular ressources.

7.2 Global Earthquake and weather station sensor net-
work

8 Conclusion

Developing with lazarus IDE and freepascal

8.1 Acknowledgments

Rene entirely developed Pastella, the Distributed Search Engine, Application
Launcher for Terragen and most extensions including chatbot Gina. Tiziano
did integration and documentation work. Many thanks go to our artists paula-
treides, red, MM, nico for their breath-taking Terragen videos and to our users,
in particular to swiftstream, johnatemps, lwm for running GPU for very long
times.

8 CONCLUSION 26

If you found omissions or mistakes in this document, please mail them to
gpu-world@lists.sourceforge.net. This document is version 0.700.

8.2 Legal notice

Terragen[8] is copyrighted by PlanetSide Software. Terragen is also a registered
trademark. It is free for non-commercial use. Commercial users are required to
register.

GPU, its frontends and plugins (without Terragen) are under the GPL, the
GNU General Public License. TGnutella is commercial and cannot be dis-
tributed. However, we can share TGnutella source code among people working
on the GPU project without paying additional fees.

Copyright c©2002-2005 the GPU Development Team, all rights reserved.

9 REFERENCES 27

9 References

[1] R. Tegel, VisualSynapse, 2004, available from http://visualsynapse.sourceforge.
net.

[2] L. Gebauer, Synapse, 2004, available from http://synapse.ararat.cz.

[3] GPU Development Team, The GPU project, Sourceforge, 2002-2004, source
code available from http://gpu.sourceforge.net.

[4] T. Mengotti, W. P. Petersen and P. Arbenz, Distributed computing over
Internet using a peer to peer network, September 2002, available from
http://gpu.sourceforge.net.

[5] T. Mengotti, W. P. Petersen, F. Marchal, K. Nagel GPU, a framework for
distributed computing over Gnutella, April 2004, available from http://gpu.
sourceforge.net.

[6] R. Vivrette, Getting the Message, Simple Techniques for Communicating
Between Applications, Delphi Informant, November 1997, http://www.undu.
com/Articles/991221b.html

[7] delphi.about.com, Introducing Borland Delphi, 2001,
http://delphi.about.com/library/weekly/aa031202a.htm.

[8] PlanetSide Software, Terragen - photo realistic scenery rendering software,
United Kingdom, 2004,
http://www.planetside.co.uk/terragen.

[9] Hubble Development Team, Hubble in a bottle - a 3D particle viewer opti-
mized with SSE, 3dNow! and MPI, University of Zuerich, 2003
http://hubble.sourceforge.net.

[10] High Energy Astrophysics Division, DS9: Astronomical Data Visualization
Application ,
Harvard University, 2002, http://hea-www.hardward.edu/RD/ds9.

[11] Gnucleus Team, Gnutella Web Caching System, 2002,
http://www.gnucleus.com/gwebcache.

[12] Rene Tegel, Pastella, a multipurpose P2P connection layer, 2005, http://
sourceforge.net/projects/visualsynapse.

CONTENTS 28

Contents

1 Introduction 2

2 Frontend improvements 3
2.1 Frontend Communication through UDP/IP 3

2.1.1 General proceeding . 4
2.1.2 Format for request and result 4
2.1.3 Frontend Communication with Delphi and Visual Synapse

component . 5
2.1.4 Receiving results from GPU 5
2.1.5 Sending a command to GPU 5

2.2 Registering a frontend to network broadcasts 6
2.3 Plugins can use the same UDP/IP channel to submit and receive

results . 6
2.4 Adding a webinterface to a frontend 8

2.4.1 Using THTTPServer . 9
2.4.2 Multiple virtual directories 9
2.4.3 Recursive mapping . 10
2.4.4 Configuring the server . 10

3 Plugin improvements 11
3.1 String as parameters for the virtual machine 11

3.1.1 Examples from the user’s perspective 11
3.1.2 Examples from the developer’s perspective 12

3.2 Sending partial results from a plugin 13
3.3 Broadcasting from a plugin . 13

3.3.1 How to use broadcasting in genetic algos 13
3.4 Identification commands . 13
3.5 Application Launcher . 14

3.5.1 Example: The Terragen Plugin 14

4 Distributed Databases: The Distributed Search Engine 17
4.1 Description . 18

5 Additional documentation 18
5.1 Local cluster configuration . 18
5.2 Color maps . 19
5.3 Autoupdate mechanism . 20
5.4 Job Modifiers . 21
5.5 Cluster behaviour . 22

5.5.1 GPU Cluster statistics between 08.11.2004 and 06.01.2005 22

6 TPastella as general communication layer for P2P 23

7 Future development ideas 23
7.1 Turning the broadcast framework into an agent framework 23
7.2 Global Earthquake and weather station sensor network 25

CONTENTS 29

8 Conclusion 25
8.1 Acknowledgments . 25
8.2 Legal notice . 26

9 References 27

