
 1

PeaZip

Open source, portable
file and archive manager

Document revision: 2009 09 09

Author: Giorgio Tani

Translation: Giorgio Tani

This document refers to:

PeaZip 2.7 executable implementation;

Licensing:

present documentation is released under GNU GFDL Li cense;
PeaZip executable implementation is released under GNU LGPL License.

PeaZip official site:

http://sourceforge.net/projects/peazip/

For more information about the licenses:

GNU GFDL License, see http://www.gnu.org/licenses/fdl.txt
GNU LGPL License, see http://www.gnu.org/licenses/lgpl.txt

 2

Content:

• How to… 3

• What is PeaZip 4

• File manager 5
o Enter password 13
o Set advanced filters 13
o Create keyfile 14
o File tools 15

• Extract archives 16
• Create archives 18

• PeaLauncher 23

• Settings 24

• Supported formats 27
• Customisation and scripting 29
• Translations 30
• Notes 31

Basic

Advanced

Expert

Additional information

 3

How to...

This mini-tutorial introduces the most common operations that can be performed through PeaZip, following chapters
contains a more detailed explanation of the application and of terms used here.

Image 1: high resolution icons, SendTo and context menu integration (PeaZip entries conventionally starts with + and -) and some program’s windows in
Windows Vista

CHANGE LANGUAGE

• User interface is available in different languages: Options > Localization (and in Options > Settings)

EXTRACT ARCHIVES

• From the system: rightclick on the archives and click "Extract here" or "Extract here (in new folder)" from context
menu, or "Extract..." for more options (extraction path, password...)

• From PeaZip (recommended): select archives and click on "Extract" button, or rightclick and click "Extract" or
"Extract (in new folder)" in context menu

EXTRACT OBJECTS FROM ARCHIVE

• Doubleclick the archive to open it with PeaZip, select files and folders to be extracted and drag them to the
system, or rightclick and chose "Extract selected" in context menu

CREATE ARCHIVE

• From the system: rightclick on objects to be archived and click on "Add to archive" in SendTo menu
• From PeaZip (recommended): select objects to be archived and click on "Add" button

CREATE SEPARATE ARCHIVES

• From the system: rightclick on objects to be archived separately and click on "Add to separate archives" in
context menu

• From PeaZip (recommended): select objects to be archived separately and click on "Add" button; before
confirming with "Ok", check "Add each object to a separate archive" option

UPDATE EXISTING ARCHIVE

• Doubleclick to the archive to open it with PeaZip and drag here files and folders to be added, or click on "Add"
button and use application's context menu to add objects to the archive

 4

What is PeaZip

PeaZip is a general purpose file and archive manager application, aiming to provide a cross-platform graphical interface
for many Open Source archiving and compression utilities in order to handle most of available archiving formats like 7Z,
RAR (extraction), TAR, ZIP and many other ones, see Supported formats chapter for more information.

The program features powerful and flexible inclusion/exclusion filters and search tools, provide optional two factor
authentication through password and keyfile, and allows to deeply fine tune the job’s definitions, exposing through a
single, consistent frontend GUI the options of underlying applications.

The list of objects to be archived or extracted can be saved for future use, to speed up backup and restore tasks.
Also the resulting command for archive creation and extraction can be saved, to get the full control on job’s definition,
helping the user in bridging the gap between GUI and console applications to get the best of both worlds.
A detailed log is available after each operation.

PeaZip also collects a set of handy file management tools: robust file copy, split and join files, fast or secure file deletion,
calculation of a wide set of checksums and hashes over selected files, byte-to-byte comparison of two files, web search
etc.

PeaZip can be used as file manager, or can be used from context and SendTo menu .
File associations and menu entries (both for context and SendTo menu) can be changed running the setup program any
time it is needed.

Hint: on Windows systems you can run the installation as administrator with runas command, or “Run as” entry in
system’s context menu; on Windows Vista UAC will automatically ask for running the process as administrator.

If no system integration is preferred, PeaZip Portable is available as standalone application, not needing installation and
not modifying the host system, both packages are available on application’s website main page:
http://peazip.sourceforge.net/

Image 2: menu integration in Linux (KDE, Konqueror Service Menus)

All the open source backend applications included in base packages contain only open source software released under
OSI-approved licenses.
Handling formats not supported through open source software (presently, only ACE archives) requires installing
separately available plugin, which contains closed source, royalty free binaries.
The list of available plugin can be browsed alongside the release map of PeaZip.

 5

File manager

The application starts by default with file manager interface, pointing to the last visited directory, for navigation in the
filesystem and in archives.

On start-up, PeaZip parses the input parameters trying to understand to what function they should be passed to (i.e. to
open an archive for browsing, or adding selected objects to a new archive), see “Customisation and scripting” chapter
for the startup parameters that can be passed to PeaZip, if you want to use it in scripts or customize system’s integration

(registry entries, SendTo menu links etc...)

Image 3: browser showing navigation menu

Application’s main menu features:

File submenu, contains primary application’s functions.
In the first area, Create archive activates the archive creation interface, which allows to add files and folders to the
archive’s layout and to save, restore and merge layouts for further use.
In the second area are featured Open path and Open archive entries, and Filesystem , Bookmarks and Recent
submenus which represent three alternative ways to quickly access to most used archives or folders in the browser
interface.

• Filesystem menu is organized following a functional and hierarchical point of view, featuring links to commonly
used paths like root, home, desktop, and documents, links to “Open path” and “Open archive”, and links to
mounted devices.

• Bookmarks menu reflects user’s point of view, storing user defined favourite files, folders and search definitions;
last entry activates Bookmarks panel allowing to add, edit, sort and remove bookmarks. Items can be added to
bookmarks also from file browser’s context menu “Bookmarks” entry, from History panel’s context menu, and
from layout composer interface (“Misc” entry in context menu).

• Recent archives menu is the chronological point of view, storing last accessed archives (this feature can be
disabled for privacy, see “Settings” chapter); last entry activates History panel which contains current session’s
visited paths, archives and search definitions.

Reduce to tray entry send PeaZip to tray area; right clicking on the tray icon it is possible to resume the program, or
access most common program’s functions.

Edit submenu changes the selection of currently displayed files, for date, size, extension, attributes etc...

 6

Browser submenu, featured only when file manager is displayed, contains

• jump to archiving and extraction layout interfaces
• refresh (F5) forcing refresh of currently displayed content
• toggle browser/flat view (F6), flat view displays all together the objects contained in the current path or in the

archive

“Tools ” submenu contains:

o Enter password / Keyfile (F9) sets the default password (and optionally keyfile, if two factor authentication is
desired) to be used in browsing, testing, extraction and archive creation

o Set advanced filters (F11) sets multiple inclusion and exclusion filters to be used in browsing, testing, extraction
and archive creation; filters are applied only to archive formats managed through 7z backend interface, see
“Supported file types” chapter

o Create keyfile (F12) allows to sample entropy from the system and from user’s actions to generate a random
keyfile; this utility can be also used to generate random passwords to be used in any other application/website/etc

o System tools submenu, collecting system’s disk utilities (clean, defrag, manage, remove), system management
tools (control panel, computer management, task manager) and display environment variables (both for Linux and
Windows).

o System benchmark utility to rate the host system in terms of MIPS (millions of integer instructions per second)
and Core 2 Duo equivalent speed in MHz

“Options ” submenu contains:

o Run as different user entry (Windows only), which closes current PeaZip instance and opens a new one with
alternative user profile;

o Localization , to quickly change applications language;
o Settings , to customize application’s behaviour.

“Help ” submenu points to project’s website and to most up to date documentation available online, as well as offline
documentation included in the package: PeaZip help (linked also to F1 functional key), and a short tutorial introducing
most common operations.

The toolbar features:

• “Add ”
o While browsing the filesystem, the button adds selected files and folders to the current archive layout;

before confirming the creation of the archive with “Ok” it is possible to modify the list of objects to be
archived (dragging them or using the context menu) as well as other options, output name etc, see
“Create archive” chapter for more information.

o While browsing an existing (writeable) archive, the button brings to the archive update interface; it is
possible to add files and folders to be added to the archive as in the previous case, dragging them or
using context menu.

• “Extract ”
o Extracts all selected archives at once (or the current archive being browsed); before conforming the

extraction with “Ok” it is possible to modify output path and other options
• “Test ”

o Test selected archives for integrity
On the left of the “Test” button, an arrow shows a menu with other functions, explained in details in context menu section
of this chapter:

• List and Info to display information (more detailed in the second case) about the content of selected archives, files
or folders.

• file manager functions (only while browsing files): Copy to and Move to, Quick delete and Secure delete, or
• Delete from archive (only while browsing archives)
• Explore path and Open command prompt here, to open the path being currently browsed with Explorer (or other

default file manager) and command prompt respectively

Image 4: toolbar, note, on the right of the last button, the dropdown button which shows additional functions

To quickly jump to desired directory or archive PeaZip offers a navigation menu (shown in Image 3) in the navigation bar
(image 5); the menu is shown clicking on the arrow on the left of address.
The navigation menu is organized in three sections (as in main menu), and can be reached also from application’s
context menu and status bar.

 7

In the browser’s navigation bar the blue arrows (back, forward, and up) navigate in previously visited path (or any
previously applied search filter), as displayed on “History” panel, and to go to upper level.
Right clicking on one of the 3 arrows (back, forward and up) displays a popup menu to quickly jump to one of the 8 more
recently visited paths/filters.
Clicking “Refresh” icon (or menu entries, or F5), forces the browser to update; while the browser is updating the refresh
icons show an animation, and the refresh icon is greyed until the browser is ready.
The magnifier icon in navigation bar can be used for basic recursive and non recursive search functions; * (string) and ?
(single character) wildcards are allowed.
This basic search filter is overridden by advanced filters (F11) only for archive types allowing inclusion/exclusion filters
(i.e. 7z, rar, tar, zip…).

Image 5: navigation bar (Firecrystal theme)

At the bottom of the application’s window, on the left of the status bar , an icon represents the current path (or archive):
the icon’s hint will give information about the current unit (or archive), clicking the icon will give more detailed information,
and rightclicking the icon will show the navigation menu. On the right of the icon it is displayed synthetic information about
the currently displayed content.
On the right of the status bar are provided some more functional buttons:
“Clipboard ” shows cut/copied items and clipboard’s options, in the bottom part of the file browser.
Clipboard content’s table allows to check objects currently cut and/or copied, and to remove single objects from clipboard
if it’s need to refine the selection.
Clipboard behaviour can be switched between two modes:

• Standard clipboard (default) behaves like usual file browser’s clipboard, allowing a single cut or copy operation.
Any further selection replaces the previous one, and on paste operation cut objects, have been moved, are
removed from clipboard, while copied objects are kept in clipboard.

• Advanced clipboard allows to store multiple (and mixed) cut and copy operations; any selection is added to the
previous ones (if objects are duplicate, previously selected are kept), even from different paths and disks, and
executed on paste operation, which clears the clipboard content.

“Bookmarks ” shows bookmarked files, folders and archives.
Bookmarks can be dragged to arrange them in the desired order, clicking on the leftmost column of the Bookmarks table;
otherwise the bookmarks can be arranged alphabetically by bookmark’s path or by description clicking on the respective
column’s header (clicking again will invert the order).
“History ” shows current session’s history panel.
The splitter between this area and the file browser can be used to adjust the relative sizes of the two areas, and clicking
on the status bar will hide bottom panel.

Image 6: status bar

“Enter password / keyfile ” (F9) allows to set password and keyfile to be used when operation on archives, browsing,
extracting/testing or to create encrypted archives; this information is kept for the current session, and can be different for
each separate instance of the application.
Encrypted content, while browsing an archive, is shown with a ‘*’ appended to filename.
If the archive is encrypted and the password is not provided, a popup will ask the user to enter the password/keyfile when
extract/test/list operation are attempted.
If the password/keyfile is set, the locker icon is changed to highlight that.
Keyfile is not mandatory, it can be used if two factor authentication is preferred to password-only authentication; keyfile
creation utility can be launched form Tools menu or with F12 functional key.

navigation’s arrows: back, next,
up one level, refresh

Click the search icon for recursive (current path a nd subdirs) and non recursive search (in current pa th only) for
the string typed in basic filter field

Show navigation menu: filesystem, bookmarks, recent Address bar Basic filter field, that contains also in-archive p aths

Click to set password and optional keyfile; the ico n
changes when browsing a password protected archive

Clipboard, history and bookmarks: click to show / h ide the respective panel on the bottom
part of the file browser

Information on current volume or archive, and on cu rrently
displayed content; click the icon for more informat ion

 8

If the directory structure area is encrypted (i.e. .7z archives created with –mhe option), browsing is not possible until the
correct password/keyfile is provided: the archive browser will be empty and “no matches” will be displayed in the status

bar until it becomes possible to browse the archive, having the user provided the right password.

Please note the same can happen when the archive cannot be browsed for other reasons, i.e. it was corrupted due to bad
download or storage media failure. When strong encryption is involved, it may not be possible to determinate if the the

provided password is incorrect or if the file is corrupted, since resulting output will be random-looking in both cases.

The file browser supports drag and drop from system to application .
When files and folders are dragged to file manager, they get listed in the archive creation interface (as if they were
selected and added with “Add” button), allowing to fine tune the job before confirming, or cancel the job.
In the same way, objects dragged into the browser while browsing an archive will be added to the current archive, if the
file type allows modifications. In example, it will not be possible adding objects to archive types supported only for reading
or to some solid archives.

If a single archive file is dragged to the browser PeaZip will show a disambiguation popup to ask if adding the object to
the archive or rather opening it.

Image 7: drag and drop from application to system (Windows only); files and folders can be dragged from the filesystem or from archives to the desktop
or (file)Explorer’s windows with Address field enabled (as it is by default on all Windows versions). Drag and drop operations, as well cut/copy
selections, are cancelled pressing Esc

Browser interface features also a custom drag and drop to the system function (in Windows only, Image 7).
Dragging an archived file or folder from PeaZip to the system will extract it to the desired location; if the file is not
contained into an archive it is copied to the desired location instead.
The custom drag and drop to system feature doesn’t need to copy files being dragged to system’s temp folder before,
resulting in faster operation when big files are involved, and in better security if temp folder has not the same desired
security policies of actual output folder.
This drag and drop implementation will not show default Windows drag and drop cursors, but instead it will show a
transparent information area following the mouse and reporting detailed information on content being dragged, and it can
drag files to the path of (file)Explorer windows with Address field enabled (as it is by default on all Windows versions), or
to the desktop; it will prompt a directory selection dialog if the path is not recognized i.e. content is dropped to an
application other than (file)Explorer.

In the file browser, clicking on titles bar column’s header sorts displayed objects by the selected column i.e. name, full
(file and path) name, extension, date, size etc; a second click inverts the order.
Archives and folders are highlighted (respectively, green and orange), such objects can be opened for browsing with
double-click.

 9

Archives contained into another archive will be opened in a separate instance of PeaZip; please note that by default this
is a “preview” operation, extracting data to a temporary folder (by default in the same path, if writeable).

Hint: to open multi volume archives, the first volume (i.e. the one with .001 extension) must be selected as input file.

Hint: unsupported file types can be forcedly open as archives in PeaZip as custom format: this allows to use an arbitrary
binary, and to customize the command’s syntax, for dealing with them.

The browser can switch between flat view mode, displaying all objects contained in the archive, and classic browser
mode, using “Toggles browse/flat view” (F6) in main and context menu.
Flat view is used also when performing basic search or applying advanced filters; opening a folder will browse it in classic
mode, exiting the flat view mode.

Hint: some applications don’t explicitly declare the name of directories contained in the archive; in this way PeaZip cannot

list those undeclared objects. Switching to flat mode, or using search or filter feature, will allow seeing all the content of
those malformed archives. Extraction, listing and testing of the archive is not affected by this issue.

ACE, ARC, PAQ/LPAQ, PEA and QUAD/BALZ archives can be browsed by PeaZip in flat mode only.

In “Options > Settings > Open archive” it is possible to set PeaZip to start browsing (archives) as classic browser, as flat
view or to remember last used mode. Browsing of the filesystem, rather than of archives, is not affected by this setting
and will always start in classic mode since listing a path in flat mode could take very long time (i.e. if it is a root folder),
and the user will be warned of that when switching to flat mode is requested while browsing the filesystem.

The browser’s context menu , activated right clicking on the archive browser area, is context sensitive and provides
different options while browsing the filesystem and archives of various types (which supports different operations).
In the top area it is featured “Add to archive ” entry: while browsing the filesystem it will send selected files and folders to
the archive layout, while browsing an archive it open a submenu allowing to add files or folders or to open a search dialog
from which files/folders can dragged into the archive itself.
In this case objects will be archived starting from archive’s root, compressed and encrypted accordingly to the archive’s
settings.

Image 8: the browser, showing context menu. Click on the menu entry or on the locker icon to set password (and optionally a keyfile) to be used to
extract or add files to the archive. Some archive types needs password to be set before showing the content of the archive for browsing.

 10

Note: currently adding objects to archive adds them in archives root.
If it is needed to add objects to a subfolder of the archive, a workaround is to place the files in a folder (or nested folders)

with that name, and then add that folder to the archive: this will place the file in archive’s subfolder with same name.
I.e. to add thisfile.txt to \thisfolder1\thisfolder2\ subfolder in the archive, create thisfolder1 (where you prefer on the disk),

create thisfolder2 into thisfolder1 and move (or copy) thisfile.txt into thisfolder2. Adding or dragging thisfolder1 to the
archive will place thisfile.txt in the desired subfolder \thisfolder1\thisfolder2\ of the archive.

Please note that if it is possible for the archive format to store objects with different passwords into the same archive (i.e.
in .7z format), you can set the different passwords each time you add objects.

Note adding files/folders to encrypted .7z archives: .7z archive format can store objects encrypted with different
passwords in the same archive, so when adding an object to an encrypted 7z archive the object will be encrypted with the

password/keyfile currently set (in the form which popup clicking on the locker icon).
If the .7z archive is encrypted with “Content and filenames” option, objects can be added only using the same password /

keyfile for the whole archive.

By default, if same object exists in the archive (same name and same path in archive’s directory three), the object will be
updated: if the object the user is adding is newer, it will replace the older object; if it’s older, the archive will not be
updated.
Please note that for some archive types, notably most solid archives (i.e. .7z created with solid archive switch enabled), or
archive types supported only for browsing extraction (i.e. CAB, RAR…), doesn’t allow neither add/update nor delete
operations.

The second area provides archive management related features : extract, extract in new folder, test, list and info
(verbose listing of properties of archived objects).
While browsing archives those entries are transformed in submenu allowing applying the action to the whole archive, or
only to displayed or selected objects.

It’s recommended to use ”displayed” selection to operate on all displayed objects rather than extend the selection to all
objects, because it’s faster for the user and because it allows to compose the command in a more elegant way, using

current filter definition rather than enumerating all objects.

The third area contains file-related functions : “Open with” group allows to chose if opening the selected file or folder with
a new instance of PeaZip, or with associated application or with custom application, or with up to 16 user-selected custom
applications and scripts.

Hint: in Tools > Settings it is possible to define two sets of up to 8 custom application or scripts each (i.e. editors, players,
antivirus/antimalware etc) to be used to open files and folders bypassing the default system’s file associations; by default

PeaZip tries to find some of most common applications to valorise the entries.

While browsing an archive, “Open with ” submenu is replaced by “Extract and open with …” and “Preview with …”
submenus; preview functions will extract selected objects to a temporary folder rather than to the output path, and then
take the programmed action on the output.

Hint: if the archive is in a read only path, preview functions will transparently switch to user’s temporary folder, while
extract here functions will warn the user and ask to select a writeable output path.

Double-clicking an object while browsing the filesystem is triggers open with associated application action, while browsing
an archive it triggers preview with associated application action.
When performing any of those actions while browsing archives, the selected object will be extracted without replicating
the directory structure in the archive; if replicating the archive structure is desired uncheck “Always ignore paths for
Extract and…” option (see “Settings” chapter). If the object is a directory paths will not be ignored, this condition overrides
all other switches.

In this third area, “File tools” submenu contains a set of file management tools described in its own chapter.
“Modify” submenu contains: create new folder, rename, copy or move to, cut, copy, paste (using robust file copy/move
with system’s robocopy , or xcopy on pre-Vista systems).
Cut, copy and paste operations can also be performed with keyboard shortcuts of Crtl+X, Ctrl+C and Ctrl+V respectively.
Pressing Ctrl+V while browsing an archive adds objects from clipboard to the archive; in this case objects will not be
removed from the filesystem even if Ctrl+X was used, since PeaZip tries to not automatize potentially dangerous
operations such file deletion, letting that kind of decision under the full control of the user.
“Delete” submenu contains quick delete, which allows the fast deletion of selected objects, without needing to move
them to recycle bin, and secure delete (only in the filesystem, not available in archives) which performs a secure file
deletion as described in “File tools” chapter.
While browsing archives filesystem related functions (including cut, copy, paste) are disabled and the area shows only
simple deletion from archive, if this action is supported for the current archive type.

 11

Fourth area contains browsing-related entries , replicating the navigation menu structure previously described
(fileystem/bookmarks/recent).
“Search” allows recoursive (search in subpaths too) and non-recoursive search from current path, and features “Search
on the web” submenu which allows searching for the filename (editable before launching the search) on different web
based services, as Google and Yahoo search engines, Usenet, Wikipedia, Wiktionary and other Wiki projects.
This feature can help users in case of any doubt or need of any additional information about the object before archiving it
or before extracting it from the archive..
“Misc” contains entries to open a system’s explorer window or a system’s console session in current path.

File manager’s keyboard shortcuts

File/archive browser supports following keyboard shortcuts; some functions are format-specific and will be ignored if not
supported for the current archive type.

Functional keys:
F1 help
F2 browse desktop / Ctrl+F2 browse user’s home / Shift+F2 browse computer’s root / Ctrl+Shift+F2 browse archive

root, if browsing inside an archive (otherwise browse computer’s root)
F3 recursive search / Ctrl+F3 non recursive search (search here)
F4 up one level
F5 refresh
F6 toggle browse/flat view
F7 browse most recently visited item (Ctrl, second, Shift, third)
F8 browse first item in bookmarks list (Ctrl, second, Shift, third)
F9 set password/keyfile
F10 menu
F11 set advanced filters
F12 create keyfile or random password

Navigation :
Toggle browse mode / flat view mode * or F6
Go to computer’s or archive’s root Ctrl+R
Search (in this folder and subfolders) F3
Search in this folder only Ctrl+F3
Browse most recently visited item F7
Browse first item in bookmarks list F8
Open directory/archive < or Enter or doubleclick on the folder/archive
Up one level > or Ctrl+U or backspace or click on blue arrow icon or F4
Go to object’s path Ctrl+P (useful in flat view and search/filter mode)
Go back in history Ctrl+B or Backspace
Forward in history Ctrl+F

Extract :
Extract all content Ctrl+A
Extract displayed content Ctrl+D
Extract selected content Ctrl+S
Extract to new folder functions same as previous ones, using Ctrl+Alt+A/D/S
Extract selected Ctrl+Enter
Extract selected to new folder Shift+Enter

 12

Test all (when browsing an archive) Ctrl+T

Note: "extract selected" extracts the entire selected archive(s) if browsing the filesystem, and extracts selected item(s) if
browsing an archive.

Extract and open / preview (on selected objects) :
Extract and open with PeaZip Ctrl+Z
Extract and open with default application Ctrl+O
Extract and open with … Ctrl+W
Preview functions same as previous ones, using Ctrl+Alt+Z/O/W
Preview selected Enter or doubleclick

File Tools (when browsing the filesystem) :
Compare selected object with… =
Checksum and hash of selected objects ?

Modify :
Quick delete / Delete form archive Del
Secure delete (files only) Shift+Del
Refresh F5 or icon in first column of titles’ bar
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Cancel current selection and clear clipboard Esc

File manager’s mouse controls

Doubleclick : preview selected object with associated application

Rightclick : activate file/archive browser’s context menu;

Middle button click : extract selected object(s)

 13

Enter password (F9)

Password form allows to set password and, optionally, a keyfile for two factor authentication.
Once a password is entered, it is used by:

• file manager, since some encrypted archives needs password for being browsed
• archive extraction, to open encrypted archives
• archive creation, to create encrypted archive (if the selected format supports encryption); in archive creation

interface it is specified if the password is set and if encryption is supported for selected archive format.
“Encrypt also filenames” option is used during creation of 7Z and ARC formats: if checked, the encrypted archive will
need password for being browsed, else the content will be visible; in both cases extraction will require the password.

Image 9: enter password and keyfile

Set advanced filters (F11)

Image 10: inclusion and exclusion filters

 14

“Advanced filters” form allows to use multiple inclusion and exclusion criteria, one per line, that can optionally recourse
subdirs of the archive (“Inclusion/Exclusion filters recourse subdirs” options), and can be applied only to archive formats
supported through 7z and FreeArc backends.
Advanced filters bypass the archive browser’s basic search filter (in mentioned archive types) so address bar is disabled if
“Use advanced filters” option is checked.

Multiple filters, one per line, can be written in the inclusion and exclusion fields; string delimiters (“ on Windows and ‘ on
Linux and other *x systems) are not needed to be explicitly entered by the user.
In example, if the user needs to extract (or display) only “myfile.txt” plus all files named “your file” and all .mp3 files, but
not .mp3 starting with a and m, could write in the inclusion field:

myfile.txt
your file.*
*.mp3

and in the exclusion field:
a*.mp3
m*.mp3

To exclude directories, use the syntax dirname*\
Please refer to 7z documentation about inclusion and exclusion filters to understand how they works to get best result
from this very flexible tool.

Create keyfile (F12)

For higher security against dictionary and some social engineering attacks, a keyfile can be used along with the
passphrase to key the encryption.
The keyfile need to be securely managed since its content need to remain secret as well as the passphrase; any file can
be used as a key, but it’s strongly recommended to use a randomly generated file.
If a keyfile is used for a non-PEA archive, the SHA256 hash of the file (no size limit) encoded in Base64 (RFC 4648) will
be prepended to the password, then it will be possible to work on archives encrypted with a keyfile using PeaZip or any
application following the same convention, or simply entering the Base64-encoded hash as the first part of the password.

PeaZip can create a random keyfile sampling different entropy sources and submitting entropy collected to a robust
random number generation routine, in the same interface it’s also possible to generate a 4-64 character random
password ; the password will contain mixed case base characters and digits only, in order to be typeable on any
keyboard layout and to be accepted by almost all applications or online password forms.
The passwords and keyfiles generated in that way can be used not only in PeaZip but also in any other application
requiring a strong password or a random keyfile.
This utility uses functions provided by pea’s libraries so refer to Pea documentation for any detail about random number
generation and entropy collection in PeaZip project.

Image 11: keyfile generation utility

 15

File tools

PeaZip collect also handy file management utilities which are not strictly archiving-related.
Those utilities are accessible from file manager and (except for secure file deletion) from archive extraction and creation
interfaces.

Secure file deletion is intended for securely remove files and folders from disk, avoiding possible data recovery.
In the application’s context menus it is featured alongside quick deletion’s entry rather than in other file tools’ submenu.
Secure deletion accepts multiple files and directories as input, and provides multiple overwriting of file data with random
data stream (AES256 CTR) forcing flush to disk each time, then replacement of content with randomly sized random data
to fake file size, and multiple renaming of the file (or folder) with random string. Please use it carefully since wiped data
will reasonably be not recoverable with known means.
Anyway please note that secure file deletion doesn’t overcome any known risk of data leakage, since may exist copies of
the data as temporary files saved by application that accessed the file, or as not securely deleted older version of the file,
or cached by the system: wiping a file cannot affect that data, which can be recovered with software utilities or specific
hardware probes.
Moreover, flash based storage usually re-allocates sectors for writing transparently for the software, in order to reduce
unit’s wear since flash units have a shorter lifespan in terms of writes; this doesn’t allow to efficiently physically overwrite
original content, reducing the efficiency of file wiping.
In those cases only wiping the whole disk would be effective, but this can be very time consuming and, for flash based
disks, it will lead to fast wear and reduced lifespan of devices (complete disk wipe is currently not implemented PeaZip’s
file wipe procedure).
In “Settings > File Tools” it is possible to set number of passes to perform (2, 4, 8, 16) over the data.

Compare files performs byte to byte comparison between two files; unlike checksum or hash based comparison byte to
byte comparison can spot exactly what are the different bytes and it is not susceptible of collisions under any
circumstance, even if this condition is highly improbable and very difficult or not practically possible to trigger if a proper
hash function is chosen.

Check files can perform multiple, user selected hash and checksum on multiple files at once; this is useful to find
duplicate files and to check files for corruption when an original checksum or hash value is known.
In Tools > Settings > File Tools it is possible to select algorithms to be performed over the input files.

File split/join : plain split file is a format supported in “create archive“ interface and split volumes can be merged back to
original file from “browse archive” interface, but for ease of use those functions are available from “File tools” menu too.

List/information (from file browser): lists content of selected files/folders; in info mode it shows number of files and
folders, older and newer object’s date/time, total space occupation, and larger and smaller object’s sizes.

Hexadecimal preview (beta) : a very basic tool to view the content of a file represented as hexadecimal values.
Shows offset, hexadecimal representation of bytes, and possible utf8 translation of each string of 16 bytes per row.
At current level of implementation please note that:

- not all rows could be correctly represented in the GUI as utf8 strings, but they will be correctly written to file using
save report feature;

- the implementation is slow and so it’s limited to small files (up to 16MB).

 16

Extract archives

This interface is activated when one or more archives are selected for extraction from file manager, or when browsing an
archive the whole content or part of it is selected for extraction.
The main application’s menu is enabled (except for Browser submenu) and three tabs are featured.

Image 12: Extraction interface showing context menu

Extract

This is the main tab for extraction jobs, containing most commonly used parameters and Ok and Cancel button to confirm
start or to discard the current operation.

Extract in new folder checkbox, when checked, triggers extraction to a fresh new folder, avoiding possible naming
conflict and unwanted “tarbomb” effect (when an unexpectedly large number of files is extracted in current path getting
mixed with existing files).
It is automatically checked when “Extract (in new folder)” is used instead of “Extract” menu entry.

Output group allows to select output directory; on the left of the address box, the arrow button popup a navigation menu
similar to the one featured in file manager, to speed up the selection of most used paths.
The extraction’s navigation menu is organized in Filesystem , Bookmarks and Recent submenus, containing only
directory entries where the file manager’s navigation menu can feature also file entries.
In Output group it is also possible to set the password , if needed for extraction, and to control if password is set or not.

Format options
This group set options for 7z backend, that is used to support most common file formats.

• Possible actions performed by the extraction routine:
o “Extract” extracts archived objects with paths, replicating the directory structure of the input data;

 17

o “Extract (without path)” will extract all archived files to the same path;
o “List” will show archive’s content;
o “List (with details)” will give a more detailed report on archive’s content, the same given by “Info” entries

in context menu. List functions will always be performed in pipe mode (even if 7z option is set to “console
mode”), using graphical wrapper in order to make easier reading and saving the report.

o “Test” will perform type specific tests to prove or disprove archive’s integrity.
• What the extraction routine will do in case of naming conflict while extracting data (when changed, this parameter

is saved to PeaZip’s configuration file):
o “Auto rename extracted files” assign a new unique name to objects being extracted from the archive each

time a naming conflict is encountered; that policy assures that pre-existing objects will keep their names
and new ones will get new unique names (default).

o “Auto rename existing files” assures that extracted objects get the desired name while pre-existing
objects are renamed with a new unique name.

o “Overwrite existing files” make all pre-existing objects overwritten by extracted objects.
o “Skip existing files” assure that pre-existing objects are not touched by the extraction operation, being the

conflicting objects not extracted from the archive.
This group also links to “Advanced” tab which contains job parameters for other backend executables.

On the bottom of the tab are listed the archives that are going to be extracted (extraction layout), with the total number
of archives and total size; additional archives can be dragged here to be added to the list.

Rightclicking on the input list shows the contextual menu , which features functions to add archives to extraction layout
(add files, search ad drag here, load layout), and other related functions.
The layout can be saved to a UTF-8 text file (for maximum flexibility of use); when a layout is loaded each object is
checked (must exist, duplicates are skipped).
From the context menu it is also possible to remove objects from the archive’s layout (“Remove selected objects” and
“Clear layout”) and to explore selected object’s path.
“Go to file browser” can be used to return to file browsing without discarding the current list of archives, in example to
navigate and search for other archives to be added to the list from file browser interface.
“Open with…” submenu of context menu allows opening the selected object with PeaZip, associated application, or a
custom applications.
“File Tools” submenu allows quick access to some PeaZip functions to be applied on selected objects (see “File tools”
chapter).
Objects in the archive layout can be sorted by name, full name, size, extension, type, attributes etc, clicking on titles in
archive layout’s title bar.

Advanced

This tab features “Special formats ” group which is similar to “Format options” group of previous tab, and allows to set
parameters for non-7z backend executables. Notably, in this group it is possible to change action for FreeArc backend to
“Repair”, which (for ARC archives only) verifies integrity and tries to repair the archive(s) using the recovery records that
may have been included at the archive creation.

Extract supported non-archive types checkbox, unchecked by default, allows some non-archive types like executables,
MS Office and Open Office documents etc to be treated as archives, in order to be disassembled.
In file manager those file types are displayed with special icons to show they can be accessed as archives by PeaZip, but
will not be treated as archives by default.

Extract unsupported file types checkbox, unchecked by default, allows any arbitrary type of file to be treated as an
archive by PeaZip, providing the user can specify a custom executable backend to handle the file type in “Custom
parameters ” group, which is enabled if this option is checked.

Console

From this tab, only when extraction is launched while browsing inside an archive, it is possible to transform the job
defined in the GUI interface into a command line that can be edited (independently from the job definition in the GUI
frontend).
Rightclicking on “Click to import…” label or on “Save job” button it is possible to compose the command line operating on
all, displayed or selected objects, if partial extraction of content is supported for the current archive type (7z, arc, rar, tar,
zip…).
This command line can be launched or saved as a text file for future use, as study, scripting, analysis etc.

 18

Create archives

This interface is activated when files and folders are selected for being added to an archive from file manager, or when,
browsing an archive, it is requested to update it adding other files and folders.
The main application’s menu is enabled (except for Browser submenu) and three tabs are featured.

Image 13: “Create archive” interface (on Windows Vista)

Archive

This is the main tab for archive creation (or update) jobs, containing most commonly used parameters and Ok and
Cancel button to confirm start or to discard the current operation.

Output group allows to select output directory and file name; on the left of the address box, the arrow button popup a
navigation menu similar to the one featured in file manager, to speed up the selection of most used paths.
The archiving navigation menu is organized in Filesystem , Bookmarks and Recent submenus, containing only directory
entries where the file manager’s navigation menu can feature also file entries.
In Output group it is also possible to set the password to create an encrypted archive; if a password is set the field will
inform if the selected archive format supports encryption.
From password popup it is possible to check/uncheck “Encrypt filenames” option, which, if supported by the selected
archive format (7Z and ARC formats) does not allow to browse the content of the archive if the right password is not
provided.

Format options group allows to set the archive format, more options for each format can be fine-tuned in “Advanced” tab
(see next chapter for more details); last used compression options will be remembered to be used as default, avoiding the
need to set it in advanced tab following times the format is used; resetting applications default resets also compression
options.
The info icon in the right of the archive type selection combobox will display a brief explanation of the characteristics and
features offered by the selected format.

Favourite formats menu

 19

The arrow on the left of OK button shows favourite formats menu, which for brevity and simplicity displays only some of
the supported archive format, the most widespread. Favourite formats can be customized in Options > Settings > Create
archive.

In the same group it is possible to set Volume size , allow (optionally) splitting the resulting archive in volumes of given
size, choosing between presets (from 1.44 MB FD to 8.5 GB DVD DL size) or freely composing a custom size.
This option is not supported by some formats (i.e. self extracting archives) and will be automatically overridden if not
supported (the combo box will be greyed to be noticed by the user).

Hint: to store large files/archives on small supports, or to respect mail attachments size limitations, it is possible to
split the output in volumes of desired size (“Options” tab), instead of spending more time for a deeper compression which

is not always capable to reduce the output under the desired size.

Add each object to a separate archive send each item in the list to a separate archive.
In example, adding x folders to the archive list with this option checked will create x separate archives; if it is desired to
add each file contained in a folder to a separate archive, instead, select the files in file manager and click “Add” to add
them individually to the list.

TAR before option allows to consolidate all input objects in a single TAR archive, temporarily saved in the output path,
which will then (in a second pass) be compress/encrypt/split using the format specified in archive type combo box (after
that second pass the temporary TAR archive will be deleted).
That option allows easily merging the advantages of TAR format (of mainstream and standard usage on most Unix
systems) with features of other archive formats. It is especially useful as it allows to select compression-only formats (like
gz, bz, quad) to compress archives of multiple objects (resulting i.e. in tar.gz or tar.bz or tar.quad) quite transparently for
the user, but however it can be used in conjunction with any format (forming i.e tar.7z, tar.paq, tar.pea and so on).
The application will try to check if “TAR before” option is needed; however the user can check/uncheck this option
anytime before launching the archiving process.

Append timestamp to archive name will append current date and time to the name of the archive, it is useful for
archiving and backup purpose.

On the bottom of the tab are listed the archives that are going to be archived (archiving layout), with the total number of
files and folders and total size; additional files and folders can be dragged here to be added to the list.

Rightclicking on the input list shows the contextual menu , which features functions to add files and folders to archiving
layout (add files, add folder, search ad drag here, load layout), and other related functions.
The layout can be saved to a UTF-8 text file (for maximum flexibility of use); when a layout is loaded each object is
checked (must exist, duplicates are skipped).
From the context menu it is also possible to remove objects from the archive’s layout (“Remove selected objects” and
“Clear layout”) and to explore selected object’s path.
“Go to file browser” can be used to return to file browsing without discarding the current list of archives, in example to
navigate and search for other files and folders to be added to the list from file browser interface.
“Open with…” submenu of context menu allows opening the selected object with PeaZip, associated application, or a
custom applications.
“File Tools” submenu allows quick access to some PeaZip functions to be applied on selected objects (see “File tools”
chapter).
Objects in the archive layout can be sorted by name, full name, size, extension, type, attributes etc, clicking on titles in
archive layout’s title bar.

Advanced

This tab contains fine-grained options for each supported format, including compression level.
Once advanced options for a given format are set, they are remembered, so it is usually not needed to use Advanced tab
and all of archive creation can be done form Archive tab.

Hint: most of multimedia file formats (like jpg, png, mpg, avi, mp3...) are already compressed with algorithms that are

either lossy and/or strongly optimized for the specific data structure, so compressing them with general purpose lossless
compression algorithms, even most powerful ones, are likely to provide only marginal benefits in terms of size, compared

with huge benefits which can be obtained compressing other types of files (bmp, tiff, doc, xls, txt, html…).
Consequently, it is recommended to use fastest compression settings, or fast algorithms (i.e. gz and zip’s deflate), or
even “Store” option to don’t compress, to archive those types of files in a computationally efficient way; in this way it is

possible to consolidate and optionally encrypt files that are sent to the archive, without spending much time for
compression.

Backend executables can be used by PeaZip in the native console mode or, by default, through a graphic wrapper (see
“PeaLauncher” chapter), displaying additional information usually not given by the console application (exit code

 20

explanation, input size, elapsed time in ms, speed in B/ms) and allowing to save a job report (console output plus
additional information); this behaviour can be customized in Options > Settings.

7z - Performances scales very well on multicore machines; following formats are recommended:

7Z when high compression is desired; offers powerful encryption
ZIP to provide archives which all Windows user can read with integrated “compressed folders” utility, or with most of
mainstream file/archive managers
TAR (optionally compressed with GZ or BZip2) to provide archives which most Unix (Linux, BSD …) users can read
with applications usually bundled by default

Selecting a format supported through 7z executable (7z, Bzip2, GZip, Self-extracting, Tar, Zip) it will be displayed the 7z
option subpanel, featuring Options, Compression and Encryption group box.
“Compression” group box allows choosing compression level and algorithm and to fine tune compression options, which
are format specific.

Last used compression level and method is remembered by PeaZip for 7z backend, but other custom options (dictionary,

word, passes, solid block size) will be remembered only for the current session (until the archive type is changed or
edited) and next times the last used compression level will be proposed with its default settings.

Option “Compress files open for writing” allows to add files to the archive even if open for writing by other applications,
very useful when running backup jobs (otherwise, if the option is not checked, open for writing files will be skipped); the
last used setting is remembered.
“Create self-extracting archive” options create a Win32 executable (.exe) that will self extract archive content (archived
and compressed in 7z format); the receiver will then not need any application to extract the archive since all what is
needed for extraction is embedded in the archive itself. As drawback the resulting file will be about 80KB bigger than the
raw archive and the executable must be in a single volume (Volume size option will be greyed). Checking this option the
user can choose between a console and a graphical interface (default) for the self-extracting application.

“Encryption” group box contains encryption related options:

• “Algorithm” allows to chose encryption algorithm; 7Z format supports AES, while ZIP supports AES and ZipCrypto
algorithm. AES is always used with 256 bit keys. ZipCrypto is a weak algorithm but may be useful if the user need
to generate encrypted .zip archives compatible with some outdated applications not supporting new WinZip
standard AES-based AE encryption.

“Options” group box allows choosing other format specific options:

• “Function” combo box allow to choose the policy to follow when a pre-existing archive with the given name is
found on the system:

o new archive will force the creation of a new archive, with unique name;
o add will append the input objects to the archive content, if an archive with the given name exists;
o update will substitute matching objects into the archive, if existing, with input objects.

• “Threads” combo box allow specifying the number of threads to try to generate for parallelising and speeding up
the execution of the application (possible only for LZMA, Deflate, Deflate64 and BZip2 algorithms) on Hyper
threading-enabled / multi-core / multi-CPU environments; on Windows systems single processor systems will be
recognized and will use “no multithreading” option by default while multi processor system will use “generic
multithreading” option by default; on non Windows systems “no multithreading” is the default option.

• “Other” edit box allows to freely enter additional parameters for the archiving job. This string is inserted by default
after all the parameters set by the GUI and its syntax is not checked, so use with caution.

• Send by mail open a new mail in the default mail client, attaching the resulting archive; it requires a compatible
mail client as default system client, i.e. Outlook or Outlook Express in Windows, and doesn’t work with multi
volume archives (the options is hidden if Volume size is not “Single volume”).

ARC - Recommended when high compression is desired; offers powerful encryption and, optionally, recovery records.
Performances scales very well on multicore machines.
In FreeARC’s options subpanel, it is possible to adjust compression level, specify file grouping strategy for solid archives,
create recovery records to attempt archive’s repair in case of corruption, encrypt the archive with various encryption
algorithms (AES, Serpent, Twofish, and Blowfish), create self extracting archives selecting from many sfx modules.
The format is currently being actively developed.

Custom - Allows to select an external compressor/decompressor to support file types which are unknown to PeaZip
Selecting “Custom” format, it will be displayed a subpanel allowing to specify archiver/compression utility to use to
perform the job, alongside parameters (free editing) and syntax (the way parameters, input list and output name should
be organized on the resulting command line).
Last 8 used custom executables are remembered and can be chosen from a popup menu rightclicking on executable’s
selection control.
Please note that exact syntax of the command for a custom executable may need to be utterly adjusted, this can be done
in “Console” tab, which allows importing and free editing of the job definition.

 21

Pea - Recommended when powerful encryption and integrity check are desired; provides fast compression
Selecting Pea as archive format it will be displayed the Pea option panel; this is the archive format developed from the
author of PeaZip and it is supported through Pea executable; for more information on it you may look the documentation
about Pea on http://peazip.sourceforge.net/peazip-help.html.

QUAD/BALZ - Recommended when it is desired to provide average to good compression, with fast uncompressing
Selecting QUAD/BALZ, the option subpanel will allow to choose compressor engine between QUAD and BALZ (newer
ROLZ-based compressor), and if using max compression mode (for both QUAD and BALZ, compression will be slower,
but decompression will remain fast). QUAD and BALZ are compression only algorithms and likewise other ones (GZ,
BZ2, LPAQ) they can benefit of “TAR before” switch for handling multiple input files.

Split - Recommended to split a single large file to the desired size, without attempting compression
Options for file split are limited to optional integrity check algorithm to be performed on the file; integrity check information
will be saved on a separate file, allowing files splitted by PeaZip to be joined by other similar applications (like Unix split,
Hjsplit, FileTools etc).

UPX - Recommended to developers to reduce the size of executables
UPX compression is intended mainly for developers needing to reduce the size of executables before distribution.
It can accept only a single executable file at time and is not intended to be used as a general purpose compression utility;
in fact misapplying Strip and/or UPX on non suitable executables (i.e. jet stripped executables) may easily lead to
unusable output executables.
It is possible to omit either UPX compression (selecting “do not compress” in “Compression” combo box) or Strip pre-
processing (unchecking “Strip before UPX”).
By default it is created a backup copy of the executable before Strip/UPX (option “Keep executable’s backup”), named as
the executable with .backup extension appended.

*PAQ - Recommended when highest possible compression is desired (experimental; speed and memory usage makes it
not recommendable for general purpose use on current generation machines)
PAQ is a very powerful compression scheme and it’s presently in research state; different versions and branches exist
and you should use the very same implementation to compress and uncompress data, PeaZip uses PAQ8O for
compression.
It brings unmatched compression ratio, better than any other compressor; the downside is that the algorithm has very
high memory and computing power requirements for today’s machines, resulting to be very slow if compared to
mainstream compression algorithms, so the user should carefully consider if the speed/compression trade-off would be
advantageous case by case.
To obtain best results while compressing many small files you should also consider consolidation them before (i.e. using
tar) since PAQ would store filenames (and sizes) in uncompressed form.
ZPAQ is faster and lighter than PAQ, at the cost of a slightly inferior compression ratio.
Please note that for ZPAQ currently PeaZip supports only storing/extracting to full pathnames, so output options will be
ignored for that format.

Console

From this tab it is possible to transform the job defined in the GUI interface into a command line that can be edited
(independently from the job definition in the GUI frontend); this command line can be launched or saved to a text file for
future use (study, scripting, analysis etc).

 22

Keyboard shortcuts for archive extraction and creat ion

File tools :
Checksum/hash selected files ?
Compared selected file with… =

Archive layout-related :
Add file(s) Ctrl+A
Add folder Ctrl+F
Add from search dialog (drag to archive) (context menu only)
Load archive’s layout Ctrl+L
Save archive’s layout Ctrl+S
Open object with default application Ctrl+O or Enter or doubleclick
Open object with … Ctrl+W
Explore object’s path Ctrl+E

Remove selected object from archive’s layout Cancel or Ctrl+R or Ctrl+Backspace
Refresh F5 or refresh icon on the left of layout’s titles row

Mouse controls for archive extraction and creation

Doubleclick : open selected object with associated application or browse folder

Rightclick : activate “create layout” context menu;

 23

PeaLauncher

PeaLauncher is the job’s graphic wrapper, a component that graphically displays an underlying job performed by a
console-based backend used by PeaZip to create, extract, test or list an archive
By default, the window closes if no errors are detected, but remains always open for test, info and list jobs which requires
the user to read the job’s report.

It is possible to always keep the job’s window open after job termination, to inspect job’s log and command line, selecting

“Always keep open” in PeaLauncher combo box in Options > Settings

It is possible to automatically open the output path (where the archive was created, or extracted) checking “Open output
path when job completes” in Options > Settings

Image 14: PeaLauncher

The graphical wrapper is not invoked if jobs are running in console interface, either because they need to run in console
(UNACE, UPX) or because the user selected to use “Console interface” in program’s options; however list and test
always run in graphic wrapper mode using pipes to give readable job log.
In console mode, the console will automatically close when job is completed without prompting any message if the job
completes without errors, otherwise an error report will popup.
PeaLauncher can run also in “GUI + console” mode (see Settings chapter) displaying both the graphical interface and the
underlying job running in its native console interface, showing its native progress indicator, usually more detailed and
reliable than GUI’s one.

PeaLauncher can be invoked with no parameters, or with a single archive file as parameter (i.e. dragging an archive over
the executable, or a link to PeaLauncher), to be used as a minimalist standalone extraction application.

 24

Settings

Options > Settings allows to configure behaviour and aspect of PeaZip application.

General (1)

• “Localization” set application’s language; clicking on the “…” button it can be chosen a language file; language
files are stored in PeaZip’s /res/lang subpath (which can be explored clicking on the language file string). If the
language file is correctly loaded, translator’s name and translation’s revision date will be displayed and the
application will be restarted with chosen localization.

• “Desktop” contains the path of user’s desktop, if correctly got from PeaZip; it also allow to set an arbitrary path to
be used as desktop for the application, if preferred.

• “Backend binaries user interface” group allow to chose the way the backend command-line applications will run:
o in the native console interface (console mode), giving detailed and real time progress indication;
o through a graphical wrapper using pipes (graphic, default), giving a very detailed job log and allowing to

pause, resume and change priority of the job;
o graphic + console: like the previous, but also showing native console interface: gives a responsive UI and

at the same time plenty details and real time progress indication.
• “PeaLauncher” sets the policy about PeaLauncher window after job termination:

o always keep the window open (as in previous versions), useful to inspect job’s report and command line
o keep open only if needed (default from version 2.6), keeps the window open only in case of errors, or for

test, info and list jobs requiring the user to read the job’s report
o always close the window at job termination, regardless the kind and the result of the job

• “Open output path when job completes” if checked opens the output path (where the archive was created, or
extracted) after the job is completed, like some archivers does.

Image 15: default options panels

General (2)

• “Encoding” group contains character encoding related options
o Encode job definition as UTF-8 text: if checked job definition files are saved with UTF-8 encoding header,

otherwise no header will be prepended to the file.
o Archive browser interface’s character encoding option: if flagged, displays extended characters in

archived object’s names as UTF-8 text, otherwise replaces extended characters with “?” jolly character
(as in pre-2.5 releases).

Reset button restores
defaults and restart the
application

Reset Bookmarks button
deletes Bookmarks and
restarts the application

 25

Please note that conversion to UTF-8 text works fine on Linux (if UTF-8 is the system’s text encoding, as
usually is) but on Windows, at current state of development, the conversion is successful if system’s
console environment uses single-character encoding or UTF-8 (CP65001).

Note: replacing extended characters with “?” jolly character may improve commands syntax if, for any reason (i.e.

limitations due to guest OS, archiving software or archive format), the character set used while creating the archive
cannot be successfully translated on the current machine opening the archive.

• “Other” group:
o “Save history of last used archives”: on by default, allows to keep track of recently created and opened

archives (File > Recent submenu); disabling the option the history will not be tracked, the submenu will
be disabled and existing items will be cleaned closing the application.

o “Save main window state”, on by default, keeps the windows size and position on exit, otherwise last
used size and position is kept, ignoring utter modifications.

o “Show hints”, on by default, enable or disable application’s hint popup.

Create archive

• “Favourite formats” allows choosing a selection of user’s favourite formats to be displayed in the popup menu on
the left of Ok button in archive creation interface, for a quicker selection.

• “Default format” sets the default archive/compression type, by default last used format is kept

Open archive

• “Archive browser interface” sets the way the content of archives is displayed: a classic navigable browser
(default), or flat view to show all archive’s content, or last used mode.

• “Fast open routine, stop browsing if list exceeds:”, default on. PeaZip will stop representing archive’s content in
the GUI if the resulting list’s memory stream is bigger than the given value. It allows to quickly opening very big
and populated archives stopping preliminary operations if they are taking too much time/memory, allowing the
user to narrow the selection with full functional search or filter functions. Extract/list/test operations are not
affected by this setting, it is applied to archive browsing only.

• “Advanced” group contains less often used settings
o “On extract/list/test operations from system’s menus” set PeaZip behaviour when an extract, list or test

operation is launched form a system’s menu entry:
� Don’t ask for password: assume the archive is not encrypted and immediately start the

operation without spending time in searching if a password is needed;
� Test if password is needed (slower): the default behaviour with PeaZip evaluating if a

password is need, time needed depends from type and size of the archive;
� Always ask for password: always popup password request, note that it is possible to ignore it

(press enter or Ok button) to immediately start without providing a password.
o “Always ignore paths for Extract displayed” and “Always ignore paths for Extract selected”: off by default;

ignore paths extracts to output path not re-creating the directory structure as is in the archive; applies to
extract and extract to functions.

o “Always ignore paths for Extract and…”: on by default, works as the previous items on object extracted
through extract and… functions.

Hint: when extracting a folder from the archive the paths will be always preserved, overriding this option for all ignore

paths switches.

Open with…

• “Custom editors, players, antivirus scanners” provide two sets of up to 8 applications (or scripts, or commands) to
be used to open files overriding system’s file associations. Applications can be sorted dragging up or down the
application’s number in the list; rightclick to select, edit or remove applications, and enter descriptions.
Some commonly featured applications are preset and can be recalled with “Reset” link; the scripts are saved to a
separate configuration file “custedit.txt” and are not cancelled with application’s reset (as well as “Bookmarks”
list).

o “Basic edit” set allows to edit custom application with ease, selecting or typing and application or
command to be used to open the file. It is also possible to enter parameters after command or application
name; after the “Executable or command” string it will be passed a space and the input file name.

o “Advanced edit” set allows instead a bit more complex syntax, providing a string to be entered before and
after the input file name (it’s up to the user decide if spaces between strings and file name are needed).

Note: by default antivirus / antimalware scanners are defined in “Advanced edit” set, because some of them requires a bit

complex syntax, but it is only a convention.

Note: syntax’s examples of preset applications can be used as model to start customizing entries in both sets; clicking an
entry in “Advanced edit” set will show a line displaying complete command entered, with the pseudocode “%f”

representing the input file name position in the command string.

 26

File Tools
• “Checksum/hash files” group allows to select algorithms to be used for file checksum/has and how to display the

result (hexadecimal, hex LSB, Base64).
• “Secure deletion” group allows choosing number of passes to perform to securely delete files (2-16); each pass

perform: overwrite file with random data, mask original file size, rename file.

Theming tab allows to change the application colours and icons and, under Win32 (from Windows 2000), opacity.

Customize theming

At start-up the application loads a configuration file in “res” directory in the application’s path, loading theming parameters
along with other configuration variables; theming parameters are applied to PeaZip, Pea and PeaLauncher graphical
applications.
From the “Theme” drop down menu the user can chose to use preset themes which comes packed with PeaZip, or a
custom theme (choosing the “theme.txt” file from /res/themes/themename path)
From version 2.5.1 PeaZip supports compressed themes: a theme can be stored as zip or 7z file, to be extracted only if
selected by the user.
Theme’s settings set the default values for: icons folder , application’s colours , browser’s row height, GUI item’s
height (auto sized by default) to i.e. adapt the application to larger fonts, adapt toolbar buttons (i.e. to fit longer text in
some languages), and on Windows opacity value.
Theming values can be saved in the current configuration, and will override correspondent theme settings, which can be
restored clicking on “Reset” link for each variable.
To prevent using of too high levels of transparency that will make the application unusable (up to totally invisible) there is
a maximum level of transparency hard coded for the application.

The user can also create new themes from current settings, choosing a theme name and path: theming variables will be
saved as a new theme file; some themes come with the application, in “themes” dir under “res” path. Theme files (and
configuration file) can also be manually edited with a text editor.

Hint:it is also possible to edit theme graphic in theme’s path, the new bitmap will be loaded at program startup

Theme folders should be saved in /res/themes path; default theme, FireCrystal, should not be removed, since in case of
theming failure it allows to roll back automatically to basic applications colours and icons (Pea executable, meant to be
used not only through PeaZip, has hard coded theming values to not need relying on PeaZip’s conf and theme files).
From version 1.8 transparency is not activated by default, being the default opacity set to 100%, which make the
transparency-related code not used and allowing better UI performances; to use transparency simply go to theming panel
and drag the transparency bar to the desired level.

Program’s icons , on Windows, are stored in \PeaZip\res\icons\ path and can be edited with a suitable editor or replaced
with custom icon files; on Linux systems icons (in PNG format) are stored accordingly the distribution and the desktop
environment policies, i.e. \opt\kde3\share\icons\ or \usr\share\icons\

Hint: custom, user-provided icons and other resources can be found on “PeaZip resources (misc)” download group on
PeaZip project on SourceForge, and on PeaZip’s website.

Advanced settings editing

Program’s configuration is stored in conf.txt file, which by default is saved in /res folder in application’s path, but an
alternative location, either as absolute or relative path, can be set in second line of altconf.txt file in the same folder:
“same ” string in altconf.txt specify the data has to be saved in program’s res path (best for portable packages) and
“appdata ” specify the data has to be saved to %appdata%\PeaZip\ path in user profile (Windows) or /.PeaZip/ path in
user’s home on Unix systems, to guarantee write access to data from current user’s profile and allow different users to
store different and private profiles for PeaZip.
In this way only the invariant data (including altconf.txt, binaries, graphic and themes, language files etc), which needs to
be accessed only for reading during normal program's usage, is stored in program's path, that could be even set as read-
only.
All variable data files (conf.txt, rnd, custedit.txt and bookmarks.txt), which can need to be accessed for writing during
normal program's usage, will be stored in res folder (by default) or any other path specified in altconf.txt.
Variable data path in use is shown on the bottom of the Settings panel; if the altconf.txt file is deleted PeaZip will rebuild a
default one which sets variable data path in /res folder.
The user will then be able to keep separate pre-set configuration files which can be used alternatively editing the
altconf.txt file, or to package the application to fulfill custom needs as to keep the variable and invariant data stored in
separated paths.

 27

Supported file types

See also http://peazip.sourceforge.net/peazip-free-archiver.html

Main families are:

Through Pea executable (LGPL, Windows and Linux)

• Full support
o PEA: security focused, flexible integrity check and optional two factor authentication with passphrase

and keyfile (AES256 EAX mode authenticated encryption), fast compression comparable with
Zip/Gzip, native multi volume spanning.

o Split: compatible volume spanning (file split/join) function with optional integrity check

Through Igor Pavlov’s 7z (LGPL, Windows) and Myspace’s POSIX 7z (LGPL, Linux)

• Full support
o 7z, 7z sfx: feature-rich archiving format, strong AES encryption, awesome compression ratio and

optionally auto extracting archives (sfx, Win32 executables)
o Bzip2 (BZ, BZ2, TBZ, TBZ2): single file compressor, adequate speed and good compression ratio
o Gzip (GZ, TGZ): fast single file compressor, adequate compression ratio
o TAR: mainstream archiving and backup format for Unix platforms, often used to archive data to be

compressed with GZip, BZip2 or other algorithms
o ZIP: mainstream archiving and compression format for Windows platform; support covers also Deflate64-

compressed archives and AES-encrypted archives
• Browse/extract support

o ARJ, LHA, LZH: popular archiving format on DOS and early Windows platform
o CPIO, Z, TAZ, TZ: archive/compression formats for Unix platforms
o LZMA: single file compressed with LZMA algorithm, introduced with 7z format; and XZ: single file

compressor, based on LZMA-family algorithm, providing excellent compression ratio
o RAR: popular archiving and compression format, with advanced encryption and error recovery features
o Various archive types based on ZIP or its modifications

• Java archives: JAR, EAR, WAR
• PAK, PK3, PK4 : modified zip archives, used to store data by some popular games (like Quake3,

Quake4, Doom3)
• SMZIP
• UP3: U3 portable application’s package format
• XPI: Mozilla package format (addons for Firefox, Thunderbird etc)

o Various disk images
• ISO standard disk image format
• UDF widespread disk image format

o Various executable file types
• NSIS: Open Source Windows installer format
• Some Windows executables
• MSI Microsoft’s proprietary installer format for Windows

o Various (non-archive) compressed file formats, like
• CAB compressed archive format
• Compound

• Some of MS Office formats: DOC, XLS, PPT
• CHM, CHW, HXS compressed help files
• WIM, SWM Windows image format
• OpenOffice file types: container files for text, database, image and multimedia data: ods, ots,

odb, odf, odg, otg, odp, otp, odt, ott, oth, odm, oxt.
• Gnumeric .gnm files
• SWF, FLV

o Various Linux installer formats:
• DEB (Debian based)
• PET/PUP (Puppy Linux)
• RPM (Redhat based)
• SLP (Stampede Linux)

o Various Macintosh formats: DMG/HFS package/disk image format

Through PAQ/LPAQ , Matt Mahoney et al. (GPL, Windows and Linux)

• Full support
o PAQ8O, ZPAQ

• Read only

 28

o Older PAQ8 formats F/JD/L: experimental compressor; at cost of high computing time and memory
usage provides best known compression ratio for most data structures

o LPAQ1/5/8: lighter and faster version of PAQ, at the cost of some compression (single file compressor)

Through Strip (GNU binutils) and UPX (GPL Markus F.X.J. Oberhumer, László Molnár and John F. Reiser)

• Compression only
o Strip strips symbols from executables and UPX apply compression: this allows containing the size of

binaries of different types (exe, elf, etc…), which is important i.e. for distribute smaller packages; this
feature is mainly oriented to developers.

Through Ilia Muraviev’s QUAD (GPL) and BALZ (Public Domain)

• Full support
o QUAD: high performance ROLZ-based compressor which features high compression ratio and fast

decompression
o BALZ: enhances overall performances compared to QUAD

Through Bulat Ziganshin's FreeARC (GPL)

• Full support
o FreeArc’s ARC/WRC, FreeArc’s sfx: experimental archive format, featuring efficient compression (high

ratio and good speed), and advanced features like strong encryption and recovery records

(SEPARATE PLUGIN)
Through UNACEV2.DLL 2.6.0.0 (Windows) and UNACE (Linux): royalty-free, Marcel Lemke, ACE Compression Software

• Browse/extract support
o ACE: popular compression format, used mainly on Windows systems

 29

Customisation and scripting

PeaZip portable doesn’t need installation and doesn’t modify the host system, however program’s most used functions
can be integrated, under Windows, in SendTo and context menu and, under Linux, in FreeDesktop-compilant desktop
environments through .desktop files (Gnome, KDE…) and Nautilus scripts (Gnome); examples are in
FreeDesktop_integration folder included in Linux packages.

In the same way it is possible to extend the integration automatically provided by installable packages, creating quick
links in system’s menus or in scripts for most of the program’s internal functions.

Quick access to most used PeaZip’s functions is provided passing as first parameter a constant string value identifying
the quick function; those methods can be used invoking PeaZip from scripts or also creating a link to PeaZip executable
with the given first parameter (on any host system).
This allows to have a simple and homogeneous command line interface which masks the complexity and the difference in
command line syntax of underlying applications; while through PeaZip’s GUI is possible to use underlying applications
with great granularity (and save command lines for any further use), PeaZip itself is made accessible through command
line to offer an easy access to most common functions.

The full list of strings accepted as quick link to PeaZip functions when passed as first parameter is:

-add2archive: add to a new archive and open PeaZip GUI to set archive’s type and options;
-add2pea: add to a new .pea archive;
-add2crypt: add to a new encrypted .pea archive;
-add2split: raw split a single input file;
-add2wipe: securely delete selected file(s);
-add2compare: byte to byte compare two files;
-add27z: add to a new .7z archive;
-add27zmail: add to a new .7z archive and attach it to a mail (requires compatible mail client) *
-add2separate7z: add each input to a separate new .7z archive;
-add2sfx7z: add to a new self extracting 7z archive (.exe);
-add2sfx7zmail: add to a new self extracting archive and attach it to a mail (requires compatible mail client) *
-add2zip: add to a new .zip archive;
-add2zipmail: add to a new .zip archive and attach it to a mail (requires compatible mail client) *
-add2separatezip: add each input to a separate new .zip archive;
-ext2browse: open (and browse if applicable) the archive(s) in PeaZip GUI;
-ext2browsepath: browse the selected folder (or its path, if a file is selected) in PeaZip
-ext2here: extract archive(s) here;
-ext2folder: extract archive(s) here, each in a new folder named after the archive;
-ext2full: extract archive(s), allowing to specify i/o options, password and keyfile;
-ext2to: extract archive(s) to specified folder;
-ext2tofolder: extract archive(s) to specified folder, each in a new folder named after the archive;
-ext2list: list archive(s) content, to quickly look what is in the archive;
-ext2test: test archive(s) content;
-ext2main: extract archives from main applications “Archive extraction” interface;
-ext2commandprompt: open the command prompt in the selected folder (or in its path, if a file is selected)

*mail functions require a compatible mail client, like i.e. Outlook and Outlook Express, to be the default mail client of the
system.

-add2archive, -ext2main and -ext2browse open the PeaZip GUI, to allow further user’s interaction.

An example of command line syntax may be: peazip –add2zip file1 file2 directory3
which will add specified objects (in the example file 1 and 2, and all content of directory 3) to a .zip archive, auto named
after the 1st object (in this case will be named file1.zip and will be saved in the same path of file1); using –add27z instead
of –add2zip will perform the same task but will result in a .7z archive (-add2pea will result in a .pea archive, -add2sfx7z
will result in an self extracting executable and so on).
Another example may be: peazip –ext2here archive1
which will extract archive1 in the same path; using –ext2folder archive1 will be extracted to a new folder named “archive1”
in the same path of archive1.

 30

Translations

Lazarus development environment has migrated to UTF-8 for LCL (GUI-related libraries), see UTF-8 support status in
Lazarus and PeaZip documentation, so the application’s user interface can now be translated in any language.

Language files are UTF-8 encoded text files which can be edited using any suitable text editor.
To create a new translation file you can:

1. copy en.txt (in PeaZip's path in /res/lang subfolder) or any other language file, if you prefer starting from another
language, to a new file;

2. edit lines 2 to 6 of the document to enter language name, PeaZip's version (major.minor) the translation is
aimed to , translator's and last last revisor's name and last revision date;

3. translate the text after the "variable_name: " part in "=== PeaZip text group ===" AND "=== PeaLauncher text
group ===" sections of the file (don't move or remove lines, don't change the "variable_name: " part);

4. optionally, translate the mini-tutorial after "=== about text group ===" line (free editing, it is loaded and displayed
"as is" as application's mini-tutorial).

In "PeaZip translations" download page, there is a package named peazip-x.y.about_translations.zip containing a
spreadsheet file to help in creating and maintaining localizations, simply compiling column D of the spreadsheet.

The spreadsheet shows variable name (column B), corresponding text string in english (column C) and a blank, yellow
column (D) for typing the translated text strings.
On the right, a column E (blue) will show the "variable_name: " part assembled with the translated string: the content of
this area can be copied and paste to replace the text in "=== PeaZip text group ===" and "=== PeaLauncher text group
===" sections (the spreadsheet features TWO pages, one for each of the two groups).
Lines must be pasted in the original order (it is sufficient to sort them by column F).

After column F are featured all currently available translations, in order to help translators more proficient in other
languages than Englis, and to help to spot out what localizations need to be updated.
At each version all language files are mass-updated, with missing text lines in English; to update a localization, it's
enough to update the English text lines.
For a better result it is also recommended to check all the language file to see if the update is coherent with linguistic style
used by the translator of the current version.
For languages spoken in different ways in different countries (i.e. English, Spanish, Portuguese...) it is recommended to
fork the translation, creating i.e. en-us, pt-br etc

PeaZip can load out of order (not optimal for performances) language files for older or newer versions.

IMPORTANT: the spreadsheet contains 3 pages, "PeaZip text group", "PeaLauncher text group", and "About text group":
all pages need to be completed and pasted (column E, for first two pages) in the language file; the "About text group" can
be freely edited.

Translated language files can be sent to giorgiotani@interfree.it or to the mail address of PeaZip project's page on
SourceForge, to be evaluated for inclusion in future updates or publication in "PeaZip translations" packages group.
All translated language files should be considered as released under GFDL, GNU Free Documentation License, as they
have to be considered derivate work from the application's language file which is released under GFDL.

Configuration, themes and bookmarks files, saved archive layouts, job logs and exported command lines are saved, for
PeaZip 2.2 and beyond, as UTF-8 encoded text.
Older archive layouts (saved as ANSI text by previous versions of PeaZip) can still be used by PeaZip.

It should be noted however that, at present level of development of Lazarus/FreePascal project, most of the underlying
FreePascal file-handling routines are still ANSI-only, meaning the UTF-8 strings PeaZip uses internally still have to be
translated to ANSI strings to be passed to certain functions.
As PeaZip aims 1) to stay cross-platform and 2) to bridge the gap between GUI and console worlds, allowing to easily
export jobs as command lines, UTF-8 support is utterly complicated because each system / desktop environment /
widgetset PeaZip is ported to has different levels and ways of supporting UTF-8 encoding for different APIs, for system
pipes, for command line interpreters etc.

This issue currently causes:

• PeaZip cannot browse files/dirs containing characters which are not featured in host system’s characters set
(they will be replaced by “?” wildcard). This is usually not an issue on Linux systems where default character
encoding is UTF-8.

• Similarly, archived objects names containing extended characters (over ANSII code 126, ~ character) can be
represented as UTF-8 only if the character is featured in host system’s console environment characters set.
Again, this is usually not an issue on Linux because default encoding is UTF-8. On Windows, currently only
single-character encodings and UTF-8 (CP65001) are supported.

 31

Alternatively the extended characters in archived objects names can be replaced by “?” jolly character; this can
also be useful to improve command’s syntax if the character encoding used in the archive cannot be successfully
translated on the current machine.
Anyway, the ability of operate (test, extract etc) on the whole archive is not affected by this issue.

Notes

SendTo vs registry
Please note that launching the program through links in SendTo allows receiving multiple input arguments from the
command line for each instance of the program; those links can be customized editing the link files in SendTo folder.
Conversely, links in Context Menu can receive a single input argument from command line for each instance of the
program; this limitation need changing programming approach to be avoided, see in this discussion thread in example.
Moreover, Context Menu items can be customized only editing the registry, which is inherently more complex (and
potentially more dangerous) that editing a link file as in previous case; that’s why links in SendTo was the first system’s
integration mechanism implemented, anyway Context Menu integration was added in version 1.7 alongside the classic
SendTo integration.
At present level of development PeaZip’s Context Menu items can accept a single input argument; extraction, test, list,
add to separate archives and split feature works just fine with this limitation, since they launch in parallel one instance for
each input argument, but add to archive features cannot be replicated (unless there is only a single object to archive).
For that reason it’s recommended to keep Add to archive, Add to .7z and Add to zip links in SendTo menu.
For similar reason program’s entries in Windows context menu are not grouped in a subfolder since it will involve much
more complex (and potentially more dangerous) modifications to be written to registers than creating separate entries.

Creation of RAR archives
PeaZip can extract, but not create RAR archives.
No free software application can create RAR archives, unless the operation is performed invoking WinRar binary itself,
because the RAR format is proprietary.
Moreover, the UnRAR license explicitly disallows to reverse engineering the file format definitions implemented to build
functional RAR creation software.

ACE archives
Unace may require to interactively respond to some warning messages extracting archives (i.e. if an object with this name
jet exists in the output path), or to enter a password for handling an encrypted archive. If the console is not available for
user’s input (as when calling unace through gwrap executable), the feedback cannot be entered and the application
would freeze waiting for feedback.
To avoid this possible stall situation unace extraction and test operations are always called in console mode by PeaZip,
while listing operations, as for all other formats, are always launched in graphical mode of operation to offer better output
information handling (and since naming conflict and password request conditions cannot be encountered in list mode).
To run test on ACE archive it’s recommended to save the command line as text and then execute it as command line or
as script, in order to don’t get the console’s window closed after the operation completes.
Please note that from PeaZip 1.9.1 the program’s base packages contain only open source software, so handling ACE
archives will require installing a separate plugin (see application’s website) as described in “Plugin” chapter. Trying to
open an ACE archive without the plugin installed will result in a message to remember the UNACE plugin is required.

Office, Open Office, MSI and EXE files
Files in those formats are actually containers from different resource objects which can be browsed and extracted by
PeaZip; in the archive browser and layout composer those file types are highlighted as supported archive types.
However since those file types are more commonly archived rather than handled as archives themselves, PeaZip by
default don’t handle them as archives unless they are explicitly opened with “Open archive” function so double clicking on
files of those types within PeaZip starts the associated application rather than opening them as archives.
Dragging them on PeaZip will popup a disambiguation message asking if opening them as archives or add them to
archive layout interface.

Compilation, build and porting
PeaZip, Pea and Gwrap are written in FreePascal (highly compatible with Delphi and ObjectPascal languages) and
require Lazarus IDE to be compiled; Windows setup scripts (.iss files) are developed using Inno Setup.
To compile PeaZip binaries open the .lpi file of the desired binary (i.e. peach.lpi for peazip binary) and select "build all".
FreePascal supports multiple widgetsets (Win32, WinCE, GTK1, GTK2, Qt, Carbon, fpGUI) to allow compilation of GUI
applications for the various supported systems and to create different “flavours” of the application for platforms supporting
multiple widgetsets (i.e Linux).
PeaZip's sourcecode is cross platform, platform-specific code portions are contained in conditional compilations blocks.
Deploying the application to other targets than MSWINDOWS and LINUX may require adaptation of those platform
specific areas (and possibly other fine-tunings); PC-BSD users successfully built PeaZip on *BSD platform.

 32

PeaZip will also need various backend compression and archiving applications to be reachable in expected directories
within the application's path, please refer to the structure of any of the precompiled packages, either installable or
portable, to see what third parts binaries must be included, and refer to respective Authors for ports of those utilities.
Being PeaZip programmed as frontend/backend application, missing or unwanted backend binaries can be omitted, at the
cost of losing the ability of handling supported formats; for the same reason, backend binaries can be freely replaced with
64 bit counterparts or with updated versions (which will work fine as long as they follow the same syntax).
PeaZip code should be fairly easy to port on Delphi and other Pascal dialects; the underlying crypto library is explicitly
written to be portable to most or all Pascal dialects, however due to some ASM parts some of its features may be x86
processor specific.
From version 2.5 PeaLauncher was extended to be also a standalone extraction application; this could make porting
easier at least for basic extraction features, since its user interface is more simpler than PeaZip’s one.

Qt issues
Currently, Lazarus/Freepascal IDE support for Qt widgetset, on Linux platform, is marked as beta.
It means under some circumstances some unexpected behaviours may show; know issues are:

• In most cases, the drag and drop from system to the Qt version of the application will not work
• In some distribution Qt PeaZip will miss the close window icon; the application can be closed using File > Quit in

main menu (Ctrl+Q keyboard shortcut)

