
VIPS Manual
Version 7.20

John Cupitt, Kirk Martinez

This manual formatted June 9, 2010

ii

Contents

1 VIPS from C++ and Python 1
1.1 Introduction . 1

1.1.1 If you’ve used the C API . 1
1.2 The VIPS file format . 1

1.2.1 VIPS file header . 1
1.2.2 Computation formats . 3
1.2.3 Storage formats . 3

1.3 The VImage class . 3
1.3.1 Constructors . 3
1.3.2 File conversion . 5
1.3.3 Projection functions . 6
1.3.4 Assignment . 7
1.3.5 Computing with VImages . 7
1.3.6 Writing results . 7
1.3.7 Type conversions . 8

1.4 The VMask class . 8
1.4.1 Constructors . 8
1.4.2 Projection functions . 8
1.4.3 Assignment . 8
1.4.4 Computing with VMask . 9
1.4.5 VIMask operations . 9
1.4.6 VDMask operations . 9
1.4.7 Output of masks . 9

1.5 The VDisplay class . 9
1.5.1 Constructors . 9
1.5.2 Projection functions . 10

1.6 The VError class . 10
1.6.1 Constructors . 10
1.6.2 Projection functions . 10
1.6.3 Computing with VError . 10
1.6.4 Convenience function . 11

2 VIPS for C programmers 13
2.1 Introduction . 13
2.2 Core C API . 13

2.2.1 Startup . 13
2.2.2 Image descriptors . 15

iii

iv CONTENTS

2.2.3 Header fields . 15
2.2.4 Opening and closing . 15
2.2.5 Examples . 18
2.2.6 Metadata . 18
2.2.7 History . 21
2.2.8 Eval callbacks . 21
2.2.9 Detailed rules for descriptors . 21
2.2.10 Automatic resource deallocation . 21
2.2.11 Error handling . 23
2.2.12 Joining operations together . 23

2.3 Function dispatch and plug-ins . 25
2.3.1 Simple plugin example . 26
2.3.2 A more complicated example . 29
2.3.3 Adding new types . 29
2.3.4 Using function dispatch in your application . 31

2.4 The VIPS base class: VipsObject . 32
2.4.1 Properties . 32
2.4.2 Convenience functions . 33

2.5 Image formats . 33
2.5.1 How a format is represented . 34
2.5.2 The format class . 34
2.5.3 Finding a format . 34
2.5.4 Convenience functions . 34

2.6 Interpolators . 34
2.6.1 How an interpolator is represented . 34
2.6.2 A sample interpolator . 34
2.6.3 Writing a VIPS operation that takes an interpolator as an argument 37
2.6.4 Passing an interpolator to a VIPS operation . 37

3 Writing VIPS operations 39
3.1 Introduction . 39

3.1.1 Why use VIPS? . 39
3.1.2 I/O styles . 39

3.2 Programming WIO operations . 40
3.2.1 Input from an image . 40
3.2.2 Output to an image . 42
3.2.3 Polymorphism . 42

3.3 Programming PIO functions . 42
3.3.1 Easy PIO with im wrapone() and im wrapmany() 46
3.3.2 Region descriptors . 48
3.3.3 Image input with regions . 48
3.3.4 Splitting into sequences . 49
3.3.5 Output to regions . 55
3.3.6 Callbacks . 55
3.3.7 Memory allocation revisited . 58

3.4 Programming in-place functions . 58

CONTENTS v

4 VIPS reference 59
4.1 Introduction . 59
4.2 VIPS packages . 59

4.2.1 Arithmetic . 59
4.2.2 Relational . 61
4.2.3 Boolean . 61
4.2.4 Colour . 61
4.2.5 Conversion . 64
4.2.6 Matricies . 64
4.2.7 Convolution . 67
4.2.8 In-place operations . 67
4.2.9 Frequency filtering . 67
4.2.10 Histograms and LUTs . 68
4.2.11 Morphology . 68
4.2.12 Mosaicing . 70
4.2.13 CImg functions . 70
4.2.14 Other . 72
4.2.15 IO functions . 72
4.2.16 Format functions . 72
4.2.17 Resample functions . 72

vi

List of Figures

1.1 invert program in C++ . 2
1.2 invert program in Python . 2

2.1 VIPS software architecture . 14
2.2 Hello World for VIPS . 16
2.3 The IMAGE descriptor . 17
2.4 Print width and height of an image . 19
2.5 Find photographic negative . 20
2.6 Sum an array of images . 22
2.7 Two image-processing operations joined together . 24
2.8 Threshold an image at the mean value . 25
2.9 Registering a format in a plugin . 35
2.10 Registering an interpolator in a plugin . 36

3.1 Find average of image . 41
3.2 Invert an image . 43
3.3 Calculate exp() for an image . 44
3.4 Calculate exp() for an image (cont) . 45
3.5 First PIO average of image . 50
3.6 First PIO average of image (cont.) . 51
3.7 Final PIO average of image . 52
3.8 Final PIO average of image (cont.) . 53
3.9 Final PIO average of image (cont.) . 54
3.10 PIO invert . 56
3.11 PIO invert (cont.) . 57

4.1 Arithmetic functions . 62
4.2 Relational functions . 63
4.3 Boolean functions . 63
4.4 VIPS colour space conversion . 64
4.5 Colour functions . 65
4.6 Conversion functions . 66
4.7 Conversion functions (cont.) . 67
4.8 Matrix functions . 68
4.9 Convolution functions . 69
4.10 In-place operations . 70
4.11 Fourier functions . 70
4.12 Histogram/LUT functions . 71

vii

viii LIST OF FIGURES

4.13 Morphological functions . 71
4.14 Mosaic functions . 72
4.15 CImg functions . 73
4.16 Other functions . 73
4.17 IO functions . 73
4.18 Format functions . 74
4.19 Resample functions . 74

List of Tables

1.1 VIPS header . 4
1.2 Possible values for BandFmt . 4
1.3 Possible values for Coding . 4
1.4 Possible values for Type . 5

2.1 Argument type macros . 27

4.1 Miscellaneous programs . 60

ix

Chapter 1

VIPS from C++ and Python

1.1 Introduction
This chapter describes the C++ API for the VIPS image
processing library. The C++ API is as efficient as the C
interface to VIPS, but is far easier to use: almost all cre-
ation, destruction and error handling issues are handled
for you automatically.

The Python interface is a very simple wrapping of this
C++ API generated automatically with SWIG. It adds a
few utility methods noted below, but otherwise the two
interfaces are identical other than language syntax.

1.1.1 If you’ve used the C API
To show how much easier the VIPS C++ API is to
use, compare Figure 2.2.5 on page 20 to Figure 1.1 on
page 2. Figure 1.2 on page 2 is the same thing in Python.

A typical build line for the C++ program might be:

g++ invert.cc \
‘pkg-config vipsCC-7.18 \

--cflags --libs‘

The key points are:

• You just include <vips/vips> — this then gets
all of the other includes you need. Everything is in
the vips namespace.

• The C++ API replaces all of the VIPS C types
— IMAGE becomes VImage and so on. The
C++ API also includes VDisplay, VMask and
VError.

• Image processing operations are member
functions of the VImage class — here,
VImage(argv[1]) creates a new VImage

object using the first argument to initialise it
(the input filename). It then calls the member
function invert(), which inverts the VImage
and returns a new VImage. Finally it calls the
member function write(), which writes the
result image to the named file.

• The VIPS C++ API uses exceptions — the
VError class is covered later. If you run this pro-
gram with a bad input file, for example, you get the
following output:

$ invert jim fred
invert: VIPS error: format_for_file:
file "jim" not found

1.2 The VIPS file format
VIPS has its own very simple file format. It is used in-
side VIPS to hold images during computation. You can
save images in VIPS format if you want, but the VIPS
format is not widely used and you may have problems
reading your images into other packages.

If you intend to keep an image, it’s much better to
save it as TIFF, JPEG, PNG, PBM/PGM/PPM or HDR.
VIPS can transparently read and write all these formats.

1.2.1 VIPS file header
All VIPS image files start with a 64-byte header giving
basic information about the image dimensions, see Ta-
ble 1.1 on page 4. This is followed by the image data.
This is usually just the pixel values in native format (ie.
the byte order used by the machine that wrote the file)
laid out left-to-right and top-to-bottom. After the image
data comes a block of optional XML which holds extra

1

2 CHAPTER 1. VIPS FROM C++ AND PYTHON

#include <iostream>
#include <vips/vips>

int
main (int argc, char **argv)
{

if (argc != 3)
{

std::cerr << "usage: " << argv[0] << " infile outfile\n";
return (1);

}

try
{

vips::VImage fred (argv[1]);

fred.invert ().write (argv[2]);
}
catch (vips::VError e)
{

e.perror (argv[0]);
}

return (0);
}

Figure 1.1: invert program in C++

#!/usr/bin/python

import sys
from vipsCC import *

try:
a = VImage.VImage (sys.argv[1])
a.invert ().write (sys.argv[2])

except VError.VError, e:
e.perror (sys.argv[0])

Figure 1.2: invert program in Python

1.3. THE VIMAGE CLASS 3

image metadata, such as ICC profiles and image history.
You can use the command-line program header to ex-
tract the XML from an image and edvips to replace
it, see the man pages.

The Type field, the Xres/Yres fields, and the
Xoffset/Yoffset fields are advisory. VIPS main-
tains their value (if you convert an image to CIE L∗a∗b∗

colour space with im XYZ2Lab(), for example, VIPS
will set Type to be IM TYPE LAB), but never uses
these values itself in determining the action of an image
processing function. These fields are to help the user
and to help application programs built on VIPS which
are trying to present image data to the user in a mean-
ingful way.

The BandFmt, Coding and Type fields can take
the values shown in tables 1.2, 1.3 and 1.4. The C++
and Python names for these values are slightly different,
for historical reasons.

1.2.2 Computation formats
This type of image has Coding set to
IM CODING NONE. The header is then followed
by a large array of pixels, laid out left-to-right, top-to-
bottom. Each pixel contains the specified number of
bands. Each band has the specified band format, which
may be an 8-, 16- or 32-bit integer (either signed or
unsigned), a single or double precision IEEE floating
point number, or a pair of single or double precision
floats forming a complex number.

All values are stored in the host-machine’s native
number representation (that is, either most-significant
first, as in SPARC and 680x0 machines, or least-
significant first, for Intel and DEC machines). If nec-
essary, the VIPS library will automatically byte-swap
for you during read.

1.2.3 Storage formats
All storage formats have other values for the Coding
field. This release supports IM CODING LABQ and
IM CODING RAD.
IM CODING LABQ stores L∗, a∗ and b∗ for each

pixel, with 10 bits for L∗ and 11 bits for each of a∗

and b∗. These 32 bits are packed into 4 bytes, with the
most significant 8 bits of each value in the first 3 bytes,
and the left-over bits packed into the final byte as 2:3:3.

This format is a little awkward to process.
Some VIPS functions can work directly on

IM CODING LABQ images (im extract area(),
for example), but most will require you to unpack the
image to one of the computation formats (for example
with im LabQ2Lab()) first.
IM CODING RAD stores RGB or XY Z float images

as 8 bytes of mantissa and then 8 bytes of exponent,
shared between the three channels. This coding style is
used by the Radiance family of programs (and the HDR
format) commonly used for HDR imaging. This style of
image is generated when you load an HDR image.

This format is a little awkward to process. Some
VIPS functions can work directly on IM CODING RAD
images (im extract area(), for example), but
most will require you to unpack the image to one of the
computation formats with im rad2float() first.

1.3 The VImage class
The VImage class is a layer over the VIPS IMAGE type.
It automates almost all of the image creation and de-
struction issues that complicate the C API, it automates
error handling, and it provides a convenient system for
composing operations.

1.3.1 Constructors
There are two principal constructors for VImage:

VImage::VImage(const char *name,
const char *mode = "r");

VImage::VImage();

The first form creates a new VImage, linking it to the
named file. mode sets the mode for the file: it can take
the following values:

"r" The named image file is opened read-only. This is
the default mode.

"w" A VImage is created which, when written to, will
write pixels to disc in the specified file. Any exist-
ing file of this name is deleted.

"t" As the "w" mode, but pixels written to the
VImage will be saved in a temporary memory
buffer.

"p" This creates a special ‘partial’ image. Partial im-
ages represent intermediate results, and are used
to join VIPS operations together, see §1.3.5 on
page 7.

4 CHAPTER 1. VIPS FROM C++ AND PYTHON

Bytes Represent VIPS name
0–3 VIPS magic number (in hex, 08 f2 f6 b6)
4–7 Number of pels per horizontal line (integer) Xsize
8–11 Number of horizontal lines (integer) Ysize
12–15 Number of bands (integer) Bands
16–19 Unused (legacy) Bbits
20–23 Band format (eg. IM BANDFMT USHORT) BandFmt
24–27 Coding type (eg. IM CODING NONE) Coding
28–31 Type (eg. IM TYPE LAB) Type
32–35 Horizontal resolution (float, pixels mm−1) Xres
36–39 Vertical resolution (float, pixels mm−1) Yres
40–43 Unused (legacy) Length
44–45 Unused (legacy) Compression
46–47 Unused (legacy) Level
48–51 Horizontal offset of origin Xoffset
52–55 Vertical offset of origin Yoffset
56–63 For future expansion (all zeros for now)

Table 1.1: VIPS header

BandFmt C++ and Python name Value Meaning
IM BANDFMT NOTSET FMTNOTSET -1
IM BANDFMT UCHAR FMTUCHAR 0 Unsigned 8-bit int
IM BANDFMT CHAR FMTCHAR 1 Signed 8-bit int
IM BANDFMT USHORT FMTUSHORT 2 Unsigned 16-bit int
IM BANDFMT SHORT FMTSHORT 3 Signed 16-bit int
IM BANDFMT UINT FMTUINT 4 Unsigned 32-bit int
IM BANDFMT INT FMTINT 5 Signed 32-bit int
IM BANDFMT FLOAT FMTFLOAT 6 32-bit IEEE float
IM BANDFMT COMPLEX FMTCOMPLEX 7 Complex (2 floats)
IM BANDFMT DOUBLE FMTDOUBLE 8 64-bit IEEE double
IM BANDFMT DPCOMPLEX FMTDPCOMPLEX 9 Complex (2 doubles)

Table 1.2: Possible values for BandFmt

Coding C++ and Python name Value Meaning
IM CODING NONE NOCODING 0 VIPS computation format
IM CODING LABQ LABQ 2 LABQ storage format
IM CODING RAD RAD 6 Radiance storage format

Table 1.3: Possible values for Coding

1.3. THE VIMAGE CLASS 5

Type C++ and Python name Value Meaning
IM TYPE MULTIBAND MULTIBAND 0 Some multiband image
IM TYPE B W B W 1 Some single band image
IM TYPE HISTOGRAM HISTOGRAM 10 Histogram or LUT
IM TYPE FOURIER FOURIER 24 Image in Fourier space
IM TYPE XYZ XYZ 12 CIE XYZ colour space
IM TYPE LAB LAB 13 CIE L∗a∗b∗ colour space
IM TYPE CMYK CMYK 15 im icc export()
IM TYPE LABQ LABQ 16 32-bit CIE L∗a∗b∗

IM TYPE RGB RGB 17 Some RGB
IM TYPE UCS UCS 18 UCS(1:1) colour space
IM TYPE LCH LCH 19 CIE LCh colour space
IM TYPE LABS LABS 21 48-bit CIE L∗a∗b∗

IM TYPE sRGB sRGB 22 sRGB colour space
IM TYPE YXY YXY 23 CIE Yxy colour space
IM TYPE RGB16 RGB16 25 16-bit RGB
IM TYPE GREY16 GREY16 26 16-bit monochrome

Table 1.4: Possible values for Type

"rw" As the "r" mode, but the image is mapped into
your address space read-write. This mode is use-
ful for paintbox-style applications which need to
directly modify an image. See §4.2.8 on page 67.

The second form of constructor is shorthand for:

VImage("VImage:1", "p")

It is used for representing intermediate results of com-
putations.

Two further constructors are handy for wrapping
VImage around existing images.

VImage(void *buffer,
int width, int height, int bands,
TBandFmt format);

VImage(void *image);

The first constructor makes a VImage from an area of
memory (perhaps from another image processing sys-
tem), and the second makes a VImage from an IMAGE.

In both these two cases, the VIPS C++ API does not
assume responsibility for the resources: it’s up to you to
make sure the buffer is freed.

The Python interface adds the usual frombuffer
and fromstring methods.

VImage.fromstring (string,
width, height, bands, format) ->
VImage

VImage.frombuffer (buffer,
width, height, bands, format) ->
VImage

Use fromstring to avoid worries about object life-
time, but you’ll see a lot of copies and high memory use.
Use frombuffer for speed, but you have to manage
object lifetime yourself.

They are useful for moving images into VIPS from
other image processing libraries. There’s also a utility
function, vips_from_PIL_mode, which turns a PIL
mode into a VIPS band, format, type triple.

VImage.vips_from_PIL_mode (mode) ->
(bands, format, type)

See also tobuffer and tostring below.

1.3.2 File conversion
VIPS can read and write a number of different file for-
mats. Information about file format conversion is taken
from the filename. For example:

VImage jim("fred.jpg");

This will decompress the file fred.jpg to a memory
buffer, wrap a VIPS image around the buffer and build
a reference to it called jim.

6 CHAPTER 1. VIPS FROM C++ AND PYTHON

Options are passed to the file format converters em-
bedded in the filename. For example:

VImage out("jen.tif:deflate", "w");

Writing to the descriptor out will cause a TIFF image
to be written to disc with deflate compression.

See the manual page for im_open(3) for details of
all the file formats and conversions available. See the
man page for VipsFormat(3) for a lower-level API
which lets you control more of the detail of reading and
writing data and is more suitable for large files.

1.3.3 Projection functions
A set of member functions of VImage provide access
to the fields in the header:

int Xsize();
int Ysize();
int Bands();
TBandFmt BandFmt();
TCoding Coding();
TType Type();
float Xres();
float Yres();
int Length();
TCompression Compression();
short Level();
int Xoffset();
int Yoffset();

Where TBandFmt, TCoding, TType and
TCompression are enums for the types in the
VIPS file header. See section §1.2.1 on page 1 for an
explanation of all of these fields.

Two functions give access to the filename and history
fields maintained by the VIPS IO system.

char *filename();
char *Hist();

You can get and set extra metadata fields with
meta_get() and meta_set(). They read and write
GValue objects, see §2.2.6 on page 18.

void meta_set(const char *field, GValue *value);
void meta_get(const char *field, GValue *value_copy);
GType meta_get_type(const char *field);

A set of convenience functions build on these two to
provide accessors for common types.

int meta_get_int(const char *field)
double meta_get_double(const char *field)
const char *meta_get_string(const char *field)
void *meta_get_area(const char *field)
void *meta_get_blob(const char *field, size_t *length)

void meta_set(const char *field, int value)
void meta_set(const char *field, double value)
void meta_set(const char *field, const char *value)
void meta_set(const char *field,
VCallback free_fn, void *value)
void meta_set(const char *field,
VCallback free_fn, void *value, size_t length)

The image() member function provides access to
the IMAGE descriptor underlying the C++ API. See the
§2.1 on page 13 for details.

void *image();

The data()member function returns a pointer to an
array of pixel data for the image.

void *data() const;

This can be very slow and use huge amounts of RAM.
The Python interface adds tobuffer and

tostring. These operations call data() to
generate the image pixels and then either copy it and
return the copy as a string, or wrap the pixels up as a
Python buffer object.

Use tostring to avoid worries about object life-
time, but you’ll see a lot of copies and high memory
use. Use tobuffer for speed, but you have to manage
object lifetime yourself.

They are useful for moving images from VIPS into
other image processing libraries. There’s also a util-
ity function, PIL_mode_from_vips, which makes
a PIL mode from a VIPS image.

VImage.PIL_mode_from_vips (vips-image) ->
mode

See also frombuffer and fromstring above.

1.3.4 Assignment
VImage defines copy and assignment, with reference-
counted, pointer-style semantics. For example, if you
write:

1.3. THE VIMAGE CLASS 7

VImage fred("fred.v");
VImage jim("jim.v");

fred = jim;

This will automatically close the file fred.v, and
make the variable fred point to the image jim.v in-
stead. Both jim and fred now point to the same un-
derlying image object.

Internally, a VImage object is just a pointer to a
reference-counting block, which in turn holds a pointer
to the underlying VIPS IMAGE type. You can therefore
efficiently pass VImage objects to functions by value,
and return VImage objects as function results.

1.3.5 Computing with VImages
All VIPS image processing operations are member
functions of the VImage class. For example:

VImage fred("fred.v");
VImage jim("jim.v");

VImage result = fred.cos() + jim;

Will apply im_costra() to fred.v, making an
image where each pixel is the cosine of the correspond-
ing pixel in fred.v; then add that image to jim.v.
Finally, the result will be held in result.

VIPS is a demand-driven image processing system:
when it computes expressions like this, no actual pix-
els are calculated (although you can use the projection
functions on images — result.BandFmt() for ex-
ample). When you finally write the result to a file (or use
some operation that needs pixel values, such as min(),
find minimum value), VIPS evaluates all of the opera-
tions you have called to that point in parallel. If you
have more than one CPU in your machine, the load is
spread over the available processors. This means that
there is no limit to the size of the images you can pro-
cess.
§4.2 on page 59 lists all of the VIPS packages. These

general rules apply:

• VIPS operation names become C++ member func-
tion names by dropping the im_ prefix, and if
present, the tra postfix, the const postfix and
the _vec postfix. For example, the VIPS opera-
tion im_extract() becomes extract(), and
im_costra() becomes cos().

• The VImage object to which you apply the mem-
ber function is the first input image, the member
function returns the first output. If there is no im-
age input, the member is declared static.

For example, im_project(3) returns two im-
ages. You can call it from Python like this:

hout = VImage.VImage ()
vout = im.project (hout)

In other words, .project() writes the second
result to the VImage you pass as an argument.

• INTMASK and DOUBLEMASK types become
VMask objects, im_col_display types be-
come VDisplay objects.

• Several C API functions can map to the
same C++ API member. For example,
im_andimage, im_andimage_vec and
im_andimageconst all map to the member
andimage. The API relies on overloading to
discriminate between these functions.

This part of the C++ API is generated automatically
from the VIPS function database, so it should all be up-
to-date.

There are a set of arithmetic operators defined for
your convenience. You can generally write any arith-
metic expression and include VImage in there.

VImage fred("fred.v");
VImage jim("jim.v");

Vimage v = int((fred + jim) / 2);

1.3.6 Writing results
Once you have computed some result, you can write it to
a file with the member write(). It takes the following
forms:

VImage write(const char *name);
VImage write(VImage out);
VImage write();

The first form simply writes the image to the named
file. The second form writes the image to the specified
VImage object, for example:

8 CHAPTER 1. VIPS FROM C++ AND PYTHON

VImage fred("fred.v");
VImage jim("jim buffer", "t");

Vimage v = (fred + 42).write(jim);

This creates a temporary memory buffer called jim,
and fills it with the result of adding 42 to every pixel
in fred.v.

The final form of write() writes the image to a
memory buffer, and returns that.

1.3.7 Type conversions
Two type conversions are defined: you can cast
VImage to a VDMask and to a VIMask.

operator VDMask();
operator VIMask();

These operations are slow and need a lot of memory!
Emergencies only.

1.4 The VMask class
The VMask class is an abstraction over the VIPS
DOUBLEMASK and INTMASK types which gives con-
venient and safe representation of matrices.
VMask has two sub-classes, VIMask and VDMask.

These represent matrices of integers and doubles respec-
tively.

1.4.1 Constructors
There are four constructors for VIMask and VDMask:

VIMask(int xsize, int ysize);
VIMask(int xsize, int ysize,

int scale, int offset, ...);
VIMask(int xsize, int ysize,

int scale, int offset,
std::vector<int> coeff);

VIMask(const char *name);
VIMask();
VDMask(int xsize, int ysize);
VDMask(int xsize, int ysize,

double scale, double offset, ...);
VDMask(int xsize, int ysize,

double scale, double offset,
std::vector<double> coeff);

VDMask(const char *name);
VDMask();

The first form creates an empty matrix, with the spec-
ified dimensions; the second form initialises a matrix
from a varargs list; the third form sets the matrix from
a vector of coefficients; the fourth from the named file.
The final form makes a mask object with no contents
yet.

The varargs constructors are not wrapped in Python
— use the vector constructor instead. For example:

m = VMask.VIMask (3, 3, 1, 0,
[-1, -1, -1,
-1, 8, -1,
-1, -1, -1])

1.4.2 Projection functions

A set of member functions of VIMask provide access
to the fields in the matrix:

int xsize() const;
int ysize() const;
int scale() const;
int offset() const;
const char *filename() const;

VDMask is the same, except that the scale()
and offset() members return double. VMask al-
lows all operations that are common to VIMask and
VDMask.

1.4.3 Assignment

VMask defines copy and assignment with pointer-style
semantics. You can write stuff like:

VIMask fred("mask");
VMask jim;

jim = fred;

This reads the file mask, noting a pointer to the mask
in fred. It then makes jim also point to it, so jim and
fred are sharing the same underlying matrix values.

Internally, a VMask object is just a pointer to a
reference-counting block, which in turn holds a pointer
to the underlying VIPS MASK type. You can therefore
efficiently pass VMask objects to functions by value,
and return VMask objects as function results.

1.5. THE VDISPLAY CLASS 9

1.4.4 Computing with VMask
You can use [] to get at matrix elements, numbered
left-to-right, top-to-bottom. Alternatively, use () to ad-
dress elements by x, y position. For example:

VIMask fred("mask");

for(int i = 0; i < fred.xsize(); i++)
fred[i] = 12;

will set the first line of the matrix to 12, and:

VDMask fred("mask");

for(int x = 0; x < fred.xsize(); x++)
fred(x, x) = 12.0;

will set the leading diagonal to 12.
These don’t work well in Python, so there’s an ex-

tra member, get(), which will get an element by x, y
position.

x = mat.get (2, 4)

See the member functions below for other operations
on VMask.

1.4.5 VIMask operations
The following operations are defined for VIMask:

// Cast to VDMask and VImage
operator VDMask();
operator VImage();

// Build gaussian and log masks
static VIMask gauss(double, double);
static VIMask gauss_sep(double, double);
static VIMask log(double, double);

// Rotate
VIMask rotate45();
VIMask rotate90();

// Transpose, invert, join and multiply
VDMask trn() ;
VDMask inv();
VDMask cat(VDMask);
VDMask mul(VDMask);

1.4.6 VDMask operations
The following operations are defined for VDMask:

// Cast to VIMask and VImage
operator VIMask();
operator VImage();

// Build gauss and log masks
static VDMask gauss(double, double);
static VDMask log(double, double);

// Rotate
VDMask rotate45();
VDMask rotate90();

// Scale to intmask
VIMask scalei();

// Transpose, invert, join and multiply
VDMask trn();
VDMask inv();
VDMask cat(VDMask);
VDMask mul(VDMask);

1.4.7 Output of masks
You can output masks with the usual << operator.

1.5 The VDisplay class
The VDisplay class is an abstraction over the VIPS
im_col_display type which gives convenient and
safe representation of VIPS display profiles.

VIPS display profiles are now mostly obsolete.
You’re better off using the ICC colour manage-
ment VImagemember functions ICC_export() and
ICC_import().

1.5.1 Constructors
There are two constructors for VDisplay:

VDisplay(const char *name);
VDisplay();

The first form initialises the display from one of the
standard VIPS display types. For example:

VDisplay fred("sRGB");
VDisplay jim("ultra2-20/2/98");

10 CHAPTER 1. VIPS FROM C++ AND PYTHON

Makes fred a profile for making images in sRGB
format, and jim a profile representing my workstation
display, as of 20/2/98. The second form of constructor
makes an uninitialised display.

1.5.2 Projection functions
A set of member functions of VDisplay provide read
and write access to the fields in the display.

char *name();
VDisplayType &type();
matrix &mat();
float &YCW();
float &xCW();
float &yCW();
float &YCR();
float &YCG();
float &YCB();
int &Vrwr();
int &Vrwg();
int &Vrwb();
float &Y0R();
float &Y0G();
float &Y0B();
float &gammaR();
float &gammaG();
float &gammaB();
float &B();
float &P();

Where VDisplayType is defined as:

enum VDisplayType {
BARCO,
DUMB

};

And matrix is defined as:

typedef float matrix[3][3];

For a description of all the fields in a VIPS display
profile, see the manual page for im_XYZ2RGB().

1.6 The VError class
The VError class is the class thrown by the VIPS
C++ API when an error is detected. It is derived from
std::exception in the usual way.

1.6.1 Constructors
There are two constructors for VError:

VError(std::string str);
VError();

The first form creates an error object initialised with
the specified string, the last form creates an empty error
object.

1.6.2 Projection functions
A function gives access to the string held by VError:

const char *what();

You can also send to an ostream.

std::ostream& operator<<(
std::ostream&, const error&);

1.6.3 Computing with VError
Two member functions let you append elements to an
error:

VError &app(std::string txt);
VError &app(const int i);

For example:

VError wombat;
int n = 12;

wombat.app("possum: no more than ").
app(n).app(" elements\n");
throw(wombat);

will throw a VError with a diagnostic of:

possum: no more than 12 elements

The member function perror() prints the error
message to stdout and exits with a code of 1.

void perror(const char *);
void perror();

1.6.4 Convenience function
The convenience function verror creates an VError
with the specified error string, and throws it. If you pass
"" for the string, verror uses the contents of the VIPS
error buffer instead.

extern void verror(std::string str = "");

Chapter 2

VIPS for C programmers

2.1 Introduction
This chapter explains how to call VIPS functions from
C programs. It does not explain how to write new image
processing operations (see §3.1 on page 39), only how
to call the ones that VIPS provides. If you want to call
VIPS functions from C++ programs, you can either use
the interface described here or you can try out the much
nicer C++ interface described in §1.1 on page 1.

See §4.1 on page 59 for an introduction to the image
processing operations available in the library. Figure 2.1
on page 14 tries to show an overview of this structure.

VIPS includes a set of UNIX manual pages. Enter
(for example):

example% man im_extract

to get an explanation of the im_extract() function.
All the command-line VIPS operations will print help

text too. For example:

example% vips im_extract
usage: vips im_extract input output

left top width height band
where:

input is of type "image"
output is of type "image"
left is of type "integer"
top is of type "integer"
width is of type "integer"
height is of type "integer"
band is of type "integer"

extract area/band, from package
"conversion"

flags: (PIO function)
(coordinate transformer)
(area operation)

(result can be cached)
vips: error calling function
im_run_command: too few arguments

2.2 Core C API
VIPS is built on top of several other libraries, two of
which, glib and gobject, are exposed at various points
in the C API.

You can read up on glib at the GTK+ website:

http://www.gtk.org

There’s also an excellent book by Matthias Warkus,
The Official GNOME 2 Developer’s Guide, which cov-
ers the same material in a tutorial manner.

2.2.1 Startup
Before calling any VIPS function, you need to start
VIPS up:

int im_init_world(const char *argv0);

The argv0 argument is the value of argv[0]
your program was passed by the host operating sys-
tem. VIPS uses this with im_guess_prefix() and
im_guess_libdir() to try to find various VIPS
data files.

If you don’t call this function, VIPS will call it for
you the first time you use a VIPS function. But it won’t
be able to get the argv0 value for you, so it may not be
able to find it’s data files.

VIPS also offers the optional:

GOptionGroup *im_get_option_group(void);

11

12 CHAPTER 2. VIPS FOR C PROGRAMMERS

Figure 2.1: VIPS software architecture

2.2. CORE C API 13

You can use this with GOption to parse your pro-
gram’s command-line arguments. It adds several useful
VIPS flags, including --vips-concurrency.

Figure 2.2 on page 16 shows both these functions in
use. Again, the GOption stuff is optional and just lets
VIPS add some flags to your program. You do need the
im_init_world() though.

2.2.2 Image descriptors

The base level of the VIPS I/O system provides IMAGE
descriptors. An image represented by a descriptor may
be an image file on disc, an area of memory that has
been allocated for the image, an output file, a delayed
computation, and so on. Programs need (usually) only
know that they have a descriptor, they do not see many
of the details. Figure 2.3 on page 17 shows the definition
of the IMAGE descriptor.

The first set of fields simply come from the image file
header: see §1.2.1 on page 1 for a full description of
all the fields. The next set are maintained for you by
the VIPS I/O system. filename is the name of the
file that this image came from. If you have attached
an eval callback to this image, time points to a set of
timing statistics which can be used by user-interfaces
built on VIPS to provide feedback about the progress of
evaluation — see §2.2.8 on page 21. Finally, if you set
kill to non-zero, VIPS will block any pipelines which
use this descriptor as an intermediate. See §2.2.12 on
page 25.

The remaining fields are private and are used by VIPS
for housekeeping.

2.2.3 Header fields

You can access header fields either directly (as
im->Xsize, for example) or programmatically with
im_header_int() and friends. For example:

int i;

im_header_int(im, "Xsize", &i);

There’s also im_header_map() to loop over
header fields, and im_header_get_type to test the
type of fields. These functions work for image meta
fields as well, see §2.2.6 on page 18.

2.2.4 Opening and closing
Descriptors are created with im_open(). You can
also read images with the format system: see §2.5 on
page 33. The two APIs are complimentary, though
im_open() is more useful.

At the command-line, try:

$ vips --list classes

/noindent to see a list of all the supported file formats.
im_open() takes a file name and a string represent-

ing the mode with which the descriptor is to be opened:

IMAGE *im_open(const char *filename,
const char *mode)

The possible values for mode are:

"r" The file is opened read-only. If you open a non-
VIPS image, or a VIPS image written on a machine
with a different byte ordering, im_open() will
automatically convert it to native VIPS format. If
the underlying file does not support random access
(JPEG, for example), the entire file will be con-
verted in memory.

VIPS can read images in many file formats. You
can control the details of the conversion with extra
characters embedded in the filename. For example:

fred = im_open("fred.tif:2",
"r");

will read page 2 of a multi-page TIFF. See the man
pages for details.

"w" An IMAGE descriptor is created which, when
written to, will write pixels to disc in the specified
file. Any existing file of that name is deleted.

VIPS looks at the filename suffix to determine the
save format. If there is no suffix, or the filename
ends in ".v", the image is written in VIPS native
format.

If you want to control the details of the conversion
to the disc format (such as setting the Q factor for a
JPEG, for example), you embed extra control char-
acters in the filename. For example:

fred = im_open("fred.jpg:95",
"w");

14 CHAPTER 2. VIPS FOR C PROGRAMMERS

#include <stdio.h>
#include <vips/vips.h>

static gboolean print_stuff;

static GOptionEntry options[] = {
{ "print", ’p’, 0, G_OPTION_ARG_NONE, &print_stuff,

"print \"hello world!\"", NULL },
{ NULL }

};

int
main(int argc, char **argv)
{

GOptionContext *context;
GError *error = NULL;

if(im_init_world(argv[0]))
error_exit("unable to start VIPS");

context = g_option_context_new("- my program");
g_option_context_add_main_entries(context,

options, "main");
g_option_context_add_group(context, im_get_option_group());
if(!g_option_context_parse(context, &argc, &argv, &error)) {

if(error) {
fprintf(stderr, "%s\n", error->message);
g_error_free(error);

}
error_exit("try \"%s --help\"", g_get_prgname());

}
g_option_context_free(context);

if(print_stuff)
printf("hello, world!\n");

return(0);
}

Figure 2.2: Hello World for VIPS

2.2. CORE C API 15

typedef struct {
/* Fields from image header.

*/
int Xsize; /* Pels per line */
int Ysize; /* Lines */
int Bands; /* Number of bands */
int Bbits; /* Bits per band */
int BandFmt; /* Band format */
int Coding; /* Coding type */
int Type; /* Type of file */
float XRes; /* Horizontal res in pels/mm */
float YRes; /* Vertical res in pels/mm */
int Length; /* Obsolete (unused) */
short Compression; /* Obsolete (unused) */
short Level; /* Obsolete (unused) */
int Xoffset; /* Position of origin */
int Yoffset;

/* Derived fields that may be read by the user.

*/
char *filename; /* File name */
im_time_t *time; /* Timing for eval callback */
int kill; /* Set to non-zero to block eval */

... and lots of other private fields used by VIPS for

... housekeeping.
} IMAGE;

Figure 2.3: The IMAGE descriptor

16 CHAPTER 2. VIPS FOR C PROGRAMMERS

writes to fred will write a JPEG with Q 95.
Again, see the man pages for the conversion func-
tions for details.

"t" As the "w" mode, but pels written to the descrip-
tor will be saved in a temporary memory buffer.

"p" This creates a special partial image. Partial im-
ages are used to join VIPS operations together, see
§2.2.12 on page 23.

"rw" As the "r" mode, but the image is mapped into
the caller’s address space read-write. This mode
is only provided for the use of paintbox-style ap-
plications which need to directly modify an image.
Most programs should use the "w" mode for im-
age output.

If an error occurs opening the image, im_open()
calls im_error() with a string describing the cause
of the error and returns NULL. im_error() has type

void im_error(const char *domain,
const char *format, ...)

The first argument is a string giving the name of the
thing that raised the error (just "im_open", for exam-
ple). The format and subsequent arguments work ex-
actly as printf(). It formats the message and ap-
pends the string formed to the error log. You can get a
pointer to the error text with im_error_buffer().

const char *im_error_buffer()

Applications may display this string to give users
feedback about the cause of the error. The
VIPS exit function, error_exit(), prints
im_error_buffer() to stderr and terminates
the program with an error code of 1.

void error_exit(const char *format,
...)

There are other functions for handling errors: see the
man page for im_error().

Descriptors are closed with im_close(). It has
type:

int im_close(IMAGE *im)

im_close() returns 0 on success and non-zero on
error.

2.2.5 Examples
As an example, Figure 2.2.5 on page 19 will print the
width and height of an image stored on disc.

To compile this example, use:

cc ‘pkg-config vips-7.14 \
--cflags --libs‘ myfunc.c

As a slightly more complicated example, Figure 2.2.5
on page 20 will calculate the photographic negative of
an image.

2.2.6 Metadata
VIPS lets you attach arbitrary metadata to an IMAGE.
For example, ICC profiles, EXIF tags, image history,
whatever you like. VIPS will efficiently propagate
metadata as images are processed (usually just by copy-
ing pointers) and will automatically save and load meta-
data from VIPS files (see §1.2.1 on page 1).

A piece of metadata is a value and an identifying
name. A set of convenience functions let you set and
get int, double, string and blob. For example:

int im_meta_set_int(IMAGE *,
const char *field, int);

int im_meta_get_int(IMAGE *,
const char *field, int *);

So you can do:

if(im_meta_set_int(im, "poop", 42))
return(-1);

to create an int called "poop", then at some later point
(possibly much, much later), in an image distantly de-
rived from im, you can use:

int i;

if(im_meta_get_int(im, "poop", &i))
return(-1);

And get the value 42 back.
You can use im_meta_set() and

im_meta_get() to attach arbitrary GValue to
images. See the man page for im_meta_set() for
full details.

You can test for a field being present with
im_meta_get_type() (you’ll get G_TYPE_INT
back for "poop", for example, or 0 if it is not defined
for this image).

2.2. CORE C API 17

#include <stdio.h>
#include <vips/vips.h>

int
main(int argc, char **argv)
{

IMAGE *im;

/* Check arguments.

*/
if(im_init_world(argv[0]))

error_exit("unable to start VIPS");
if(argc != 2)

error_exit("usage: %s filename", argv[0]);

/* Open file.

*/
if(!(im = im_open(argv[1], "r")))

error_exit("unable to open %s for input", argv[1]);

/* Process.

*/
printf("width = %d, height = %d\n", im->Xsize, im->Ysize);

/* Close.

*/
if(im_close(im))

error_exit("unable to close %s", argv[1]);

return(0);
}

Figure 2.4: Print width and height of an image

18 CHAPTER 2. VIPS FOR C PROGRAMMERS

#include <stdio.h>
#include <vips/vips.h>

int
main(int argc, char **argv)
{

IMAGE *in, *out;

/* Check arguments.

*/
if(im_init_world(argv[0]))

error_exit("unable to start VIPS");
if(argc != 3)

error_exit("usage: %s infile outfile", argv[0]);

/* Open images for read and write, invert, update the history with our

* args, and close.

*/
if(!(in = im_open(argv[1], "r")) ||

!(out = im_open(argv[2], "w")) ||
im_invert(in, out) ||
im_updatehist(out, argc, argv) ||
im_close(in) ||
im_close(out))
error_exit(argv[0]);

return(0);
}

Figure 2.5: Find photographic negative

2.2. CORE C API 19

2.2.7 History
VIPS tracks the history of an image, that is, the se-
quence of operations which have led to the creation of
an image. You can view a VIPS image’s history with the
header command, or with nip2’s View Header
menu. Whenever an application performs an action, it
should append a line of shell script to the history which
would perform the same action.

The call to im_updatehist() in Figure 2.2.5 on
page 20 adds a line to the image history noting the in-
vocation of this program, its arguments, and the time
and date at which it was run. You may also find
im_histlin() helpful. It has type:

void im_histlin(IMAGE *im,
const char *fmt, ...)

It formats its arguments as printf() and appends the
string formed to the image history.

You read an image’s history with
im_history_get(). It returns the entire his-
tory of an image, one action per line. No need to free
the result.

const char *
im_history_get(IMAGE *im);

2.2.8 Eval callbacks
VIPS lets you attach callbacks to image descriptors.
These are functions you provide which VIPS will call
when certain events occur. See §3.3.6 on page 55 for
more detail.

Eval callbacks are called repeatedly during evaluation
and can be used by user-interface programs to give feed-
back about the progress of evaluation.

2.2.9 Detailed rules for descriptors
These rules are intended to answer awkward questions.

1. You can output to a descriptor only once.

2. You can use a descriptor as an input many times.

3. You can only output to a descriptor that was opened
with modes "w", "t" and "p".

4. You can only use a descriptor as input if it was
opened with modes "r" or "rw".

5. If you have output to a descriptor, you may sub-
sequently use it as an input. "w" descriptors are
automatically changed to "r" descriptors.

If the function you are passing the descriptor to
uses WIO (see §2.2.12 on page 25), then "p" de-
scriptors become "t". If the function you are
passing the descriptor to uses PIO, then "p" de-
scriptors are unchanged.

2.2.10 Automatic resource deallocation
VIPS lets you allocate resources local to an image de-
scriptor, that is, when the descriptor is closed, all re-
sources which were allocated local to that descriptor are
automatically released for you.

Local image descriptors

VIPS provides a function which will open a new image
local to an existing image. im_open_local() has
type:

IMAGE *im_open_local(IMAGE *im,
const char *filename,
const char *mode)

It behaves exactly as im_open(), except that you
do not need to close the descriptor it returns. It will
be closed automatically when its parent descriptor im is
closed.

Figure 2.6 on page 22 is a function which will sum
an array of images. We need never close any of the (un-
known) number of intermediate images which we open.
They will all be closed for us by our caller, when our
caller finally closes out. VIPS lets local images them-
selves have local images and automatically makes sure
that all are closed in the correct order.

It is very important that these intermediate images are
made local to out rather than in, for reasons which
should become apparent in the section on combining op-
erations below.

There’s also im_open_local_array() for
when you need a lot of local descriptors, see the man
page.

Local memory allocation

VIPS includes a set of functions for memory allocation
local to an image descriptor. The base memory alloca-
tion function is im_malloc(). It has type:

20 CHAPTER 2. VIPS FOR C PROGRAMMERS

/* Add another image to the accumulated total.

*/
static int
sum1(IMAGE *acc, IMAGE **in, int nin, IMAGE *out)
{

IMAGE *t;

if(nin == 0)
/* All done ... copy to out.

*/
return(im_copy(acc, out));

/* Make a new intermediate, and add to it..

*/
return(!(t = im_open_local(out, "sum1:1", "p")) ||

im_add(acc, in[0], t) ||
sum1(t, in + 1, nin - 1, out));

}

/* Sum the array of images in[]. nin is the number of images in

* in[], out is the descriptor we write the final image to.

*/
int
total(IMAGE **in, int nin, IMAGE *out)
{

/* Check that we have at least one image.

*/
if(nin <= 0) {

im_error("total", "nin should be > 0");
return(-1);

}

/* More than 1, sum recursively.

*/
return(sum1(in[0], in + 1, nin - 1, out));

}

Figure 2.6: Sum an array of images

2.2. CORE C API 21

void *im_malloc(IMAGE *, size_t)

It operates exactly as the standard malloc() C li-
brary function, except that the area of memory it al-
locates is local to an image. If im_malloc() is
unable to allocate memory, it returns NULL. If you
pass NULL instead of a valid image descriptor, then
im_malloc() allocates memory globally and you
must free it yourself at some stage.

To free memory explicitly, use im_free():

int im_free(void *)

im_free() always returns 0, so you can use it as an
argument to a callback.

Three macros make memory allocation even easier.
IM_NEW() allocates a new object. You give it a de-
scriptor and a type, and it returns a pointer to enough
space to hold an object of that type. It has type:

type-name *IM_NEW(IMAGE *, type-name)

The second macro, IM_ARRAY(), is very similar,
but allocates space for an array of objects. Note that,
unlike the usual calloc() C library function, it does
not initialise the array to zero. It has type:

type-name *IM_ARRAY(IMAGE *, int, type-name)

Finally, IM_NUMBER() returns the number of ele-
ments in an array of defined size. See the man pages for
a series of examples, or see §2.3.1 on page 28.

Other local operations

The above facilities are implemented with the VIPS core
function im_add_close_callback(). You can
use this facility to make your own local resource allo-
cators for other types of object — see the manual page
for more help.

2.2.11 Error handling
All VIPS operations return 0 on success and non-zero on
error, setting im_error(). As a consequence, when
a VIPS function fails, you do not need to generate an
error message — you can simply propagate the error
back up to your caller. If however you detect some error
yourself (for example, the bad parameter in the example
above), you must call im_error() to let your caller
know what the problem was.

VIPS provides two more functions for error message
handling: im_warn() and im_diag(). These are
intended to be used for less serious messages, as their
names suggest. Currently, they simply format and print
their arguments to stderr, optionally suppressed by
the setting of an environment variable. Future releases
of VIPS may allow more sophisticated trapping of these
functions to allow their text to be easily presented to the
user by VIPS applications. See the manual pages.

2.2.12 Joining operations together

VIPS lets you join image processing operations to-
gether so that they behave as a single unit. Fig-
ure 2.7 on page 24 shows the definition of the function
im_Lab2disp() from the VIPS library. This func-
tion converts an image in CIE L∗a∗b∗ colour space to
an RGB image for a monitor. The monitor character-
istics (gamma, phosphor type, etc.) are described by
the im_col_display structure, see the man page for
im_col_XYZ2rgb().

The special "p" mode (for partial) used to open the
image descriptor used as the intermediate image in this
function ‘glues’ the two operations together. When you
use im_Lab2disp(), the two operations inside it will
execute together and no extra storage is necessary for
the intermediate image (t1 in this example). This is
important if you want to process images larger than the
amount of RAM you have on your machine.

As an added bonus, if you have more than one CPU
in your computer, the work will be automatically spread
across the processors for you. You can control this par-
allelization with the IM_CONCURRENCY environment
variable, im_concurrency_set(), and with the
--vips-concurrency command-line switch. See
the man page for im_generate().

How it works

When a VIPS function is asked to output to a "p" im-
age descriptor, all the fields in the descriptor are set (the
output image size and type are set, for example), but no
image data is actually generated. Instead, the function
attaches callbacks to the image descriptor which VIPS
can use later to generate any piece of the output image
that might be needed.

When a VIPS function is asked to output to a "w"
or a "t" descriptor (a real disc file or a real memory

22 CHAPTER 2. VIPS FOR C PROGRAMMERS

int
im_Lab2disp(IMAGE *in, IMAGE *out, struct im_col_display *disp)
{

IMAGE *t1;

if(!(t1 = im_open_local(out, "im_Lab2disp:1", "p")) ||
im_Lab2XYZ(in, t1) ||
im_XYZ2disp(t1, out, disp))
return(-1);

return(0);
}

Figure 2.7: Two image-processing operations joined together

buffer), it evaluates immediately and its evaluation in
turn forces the evaluation of any earlier "p" images.

In the example in Figure 2.7, whether or not any
pixels are really processed when im_Lab2disp()
is called depends upon the mode in which out was
opened. If out is also a partial image, then no pixels
will be calculated — instead, a pipeline of VIPS opera-
tions will be constructed behind the scenes and attached
to out.

Conversely, if out is a real image (that is, either
"w" or "t"), then the final VIPS operation in the func-
tion (im_XYZ2disp()) will output the entire image
to out, causing the earlier parts of im_Lab2disp()
(and indeed possibly some earlier pieces of program, if
in was also a "p" image) to run.

When a VIPS pipeline does finally evaluate, all of the
functions in the pipeline execute together, sucking im-
age data through the system in small pieces. As a con-
sequence, no intermediate images are generated, large
amounts of RAM are not needed, and no slow disc I/O
needs to be performed.

Since VIPS partial I/O is demand-driven rather than
data-driven this works even if some of the operations
perform coordinate transformations. We could, for ex-
ample, include a call to im_affine(), which per-
forms arbitrary rotation and scaling, and everything
would still work correctly.

Pitfalls with partials

To go with all of the benefits that partial image I/O
brings, there are also some problems. The most serious
is that you are often not quite certain when computation

will happen. This can cause problems if you close an
input file, thinking that it is finished with, when in fact
that file has not been processed yet. Doing this results
in dangling pointers and an almost certain core-dump.

You can prevent this from happening with careful use
of im_open_local(). If you always open local to
your output image, you can be sure that the input will
not be closed before the output has been generated to a
file or memory buffer. You do not need to be so care-
ful with non-image arguments. VIPS functions which
take extra non-image arguments (a matrix, perhaps) are
careful to make their own copy of the object before re-
turning.

Non-image output

Some VIPS functions consume images, but make no im-
age output. im_stats() for example, scans an im-
age calculating various statistical values. When you use
im_stats(), it behaves as a data sink, sucking image
data through any earlier pipeline stages.

Calculating twice

In some circumstances, the same image data can be gen-
erated twice. Figure 2.8 on page 25 is a function which
finds the mean value of an image, and writes a new im-
age in which pixels less than the mean are set to 0 and
images greater than the mean are set to 255.

This seems straightforward — but consider if im-
age in were a "p", and represented the output of a
large pipeline of operations. The call to im_avg()
would force the evaluation of the entire pipeline, and

2.3. FUNCTION DISPATCH AND PLUG-INS 23

int
threshold_at_mean(IMAGE *in, IMAGE *out)
{

double mean;

if(im_avg(in, &mean) ||
im_moreconst(in, out, mean))
return(-1);

return(0);
}

Figure 2.8: Threshold an image at the mean value

throw it all away, keeping only the average value. The
subsequent call to im_moreconst() will cause the
pipeline to be evaluated a second time.

When designing a program, it is sensible to pay atten-
tion to these issues. It might be faster, in some cases, to
output to a file before calling im_avg(), find the av-
erage of the disc file, and then run im_moreconst()
from that. There’s also im_cache() which can keep
recent parts of a very large image.

Blocking computation

IMAGE descriptors have a flag called kill which can
be used to block computation. If im->kill is set to
a non-zero value, then any VIPS pipelines which use
im as an intermediate will fail with an error message.
This is useful for user-interface writers — suppose your
interface is forced to close an image which many other
images are using as a source of data. You can just set
the kill flag in all of the deleted image’s immediate
children and prevent any dangling pointers from being
followed.

Limitations

Not all VIPS operations are partial-aware. These non-
partial operations use a pre-VIPS 7.0 I/O scheme in
which the whole of the input image has to be present
at the same time. In some cases, this is because partial
I/O simply makes no sense — for example, a Fourier
Transform can produce no output until it has seen all of
the input. im_fwfft() is therefore not a partial op-
eration. In other cases, we have simply not got around
to rewriting the old non-partial operation in the newer

partial style.
You can mix partial and non-partial VIPS operations

freely, without worrying about which type they are. The
only effect will be on the time your pipeline takes to ex-
ecute, and the memory requirements of the intermediate
images. VIPS uses the following rules when you mix
the two styles of operation:

1. When a non-partial operation is asked to output to
a partial image descriptor, the "p" descriptor is
magically transformed into a "t" descriptor.

2. When a non-partial operation is asked to read from
a "p" descriptor, the "p" descriptor is turned into
a "t" type, and any earlier stages in the pipeline
forced to evaluate into that memory buffer.

The non-partial operation then processes from the
memory buffer.

These rules have the consequence that you may only
process very large images if you only use partial opera-
tions. If you use any non-partial operations, then parts
of your pipelines will fall back to old whole-image I/O
and you will need to think carefully about where your
intermediates should be stored.

2.3 Function dispatch and plug-ins
(This chapter is on the verge of being deprecated.
We have started building a replacement based on
GObject, see §2.4 on page 32.)

As image processing libraries increase in size it be-
comes progressively more difficult to build applications
which present the operations the library offers to the

24 CHAPTER 2. VIPS FOR C PROGRAMMERS

user. Every time a new operation is added, every user
interface needs to be adapted — a job which can rapidly
become unmanageable.

To address this problem VIPS includes a simple
database which stores an abstract description of every
image processing operation. User interfaces, rather than
having special code wired into them for each operation,
can simply interrogate the database and present what
they find to the user.

The operation database is extensible. You can define
new operations, and even new types, and add them to
VIPS. These new operations will then automatically ap-
pear in all VIPS user interfaces with no extra program-
ming effort. Plugins can extend the database at runtime:
when VIPS starts, it loads all the plugins in the VIPS
library area.

2.3.1 Simple plugin example

As an example, consider this function:

#include <stdio.h>

#include <vips/vips.h>

/* The function we define. Call this

* from other parts of your C

* application.

*/
int
double_integer(int in)
{

return(in * 2);
}

The source for all the example code in this section is in
the vips-examples package.

The first step is to make a layer over this function
which will make it look like a standard VIPS function.
VIPS insists on the following pattern:

• The function should be int-valued, and return 0
for success and non-zero for error. It should set
im_error().

• The function should take a single argument:
a pointer to a NULL-terminated array of
im_objects.

• Each im_object represents one argument to the
function (either output or input) in the form spec-
ified by the corresponding entry in the function’s
argument descriptor.

The argument descriptor is an array of structures,
each describing one argument. For this example, it is:

/* Describe the type of our function.

* One input int, and one output int.

*/
static im_arg_desc arg_types[] = {
IM_INPUT_INT("in"),
IM_OUTPUT_INT("out")

};

IM_INPUT_INT() and IM_OUTPUT_INT() are
macros defined in <vips/dispatch.h> which
make argument types easy to define. Other macros
available are listed in table 2.1.

The argument to the type macro is the name of the
argument. These names are used by user-interface pro-
grams to provide feedback, and sometimes as variable
names. The order in which you list the arguments is the
order in which user-interfaces will present them to the
user. You should use the following conventions when
selecting names and an order for your arguments:

• Names should be entirely in lower-case and con-
tain no special characters, apart from the digits 0-9
and the underscore character ‘ ’.

• Names should indicate the function of the argu-
ment. For example, im_add() has the following
argument names:

example% vips -help im_add
vips: args: in1 in2 out
where:
in1 is of type "image"
in2 is of type "image"
out is of type "image"

add two images, from package
"arithmetic"

flags:
(PIO function)
(no coordinate transformation)
(point-to-point operation)

2.3. FUNCTION DISPATCH AND PLUG-INS 25

Macro Meaning im object has type
IM INPUT INT Input int int *
IM INPUT INTVEC Input vector of int im intvec object *
IM INPUT IMASK Input int array im mask object *
IM OUTPUT INT Output int int *
IM INPUT INTVEC Output vector of int im intvec object *
IM OUTPUT IMASK Output int array to file im mask object *
IM INPUT DOUBLE Input double double *
IM INPUT DOUBLEVEC Input vector of double im realvec object *
IM INPUT DMASK Input double array im mask object *
IM OUTPUT DOUBLE Output double double *
IM OUTPUT DOUBLEVEC Output vector of double im realvec object *
IM OUTPUT DMASK Output double array to file im mask object *
IM OUTPUT DMASK STATS Output double array to screen
IM OUTPUT COMPLEX Output complex double *
IM INPUT STRING Input string char *
IM OUTPUT STRING Output string char *
IM INPUT IMAGE Input image IMAGE *
IM INPUT IMAGEVEC Vector of input images IMAGE **
IM OUTPUT IMAGE Output image IMAGE *
IM RW IMAGE Read-write image IMAGE *
IM INPUT DISPLAY Input display im col display *
IM OUTPUT DISPLAY Output display im col display *
IM INPUT GVALUE Input GValue GValue *
IM OUTPUT GVALUE Output GValue GValue *
IM INPUT INTERPOLATE Input VipsInterpolate VipsInterpolate *

Table 2.1: Argument type macros

26 CHAPTER 2. VIPS FOR C PROGRAMMERS

• You should order arguments with large input ob-
jects first, then output objects, then any extra argu-
ments or options. For example, im_extract()
has the following sequence of arguments:

example% vips -help im_extract
vips: args: input output left top

width height channel
where:

input is of type "image"
output is of type "image"
left is of type "integer"
top is of type "integer"
width is of type "integer"
height is of type "integer"
channel is of type "integer"

extract area/band, from package
"conversion"

flags:
(PIO function)
(no coordinate transformation)
(point-to-point operation)

This function sits over double_integer(), pro-
viding VIPS with an interface which it can call:

/* Call our function via a VIPS

* im_object vector.

*/
static int
double_vec(im_object *argv)
{

int *in = (int *) argv[0];
int *out = (int *) argv[1];

*out = double_integer(*in);

/* Always succeed.

*/
return(0);

}

Finally, these two pieces of information (the argu-
ment description and the VIPS-style function wrapper)
can be gathered together into a function description.

/* Description of double_integer.

*/
static im_function double_desc = {

"double_integer",

"double an integer",
0,
double_vec,
IM_NUMBER(arg_types),
arg_types

};

IM_NUMBER() is a macro which returns the number
of elements in a static array. The flags field contains
hints which user-interfaces can use for various optimi-
sations. At present, the possible values are:

IM FN PIO This function uses the VIPS PIO system
(see §3.3 on page 42).

IM FN TRANSFORM This the function transforms co-
ordinates.

IM FN PTOP This is a point-to-point operation, that is,
it can be replaced with a look-up table.

IM FN NOCACHE This operation has side effects and
should not be cached. Useful for video grabbers,
for example.

This function description now needs to be added to
the VIPS function database. VIPS groups sets of related
functions together in packages. There is only a single
function in this example, so we can just write:

/* Group up all the functions in this

* file.

*/
static im_function

*function_list[] = {
&double_desc

};

/* Define the package_table symbol.

* This is what VIPS looks for when

* loading the plugin.

*/
im_package package_table = {
"example",
IM_NUMBER(function_list),
function_list

};

The package has to be named package_table,
and has to be exported from the file (that is, not a static).
VIPS looks for a symbol of this name when it opens
your object file.

2.3. FUNCTION DISPATCH AND PLUG-INS 27

This file needs to be made into a dynamically load-
able object. On my machine, I can do this with:

example% gcc -fPIC -DPIC -c
‘pkg-config vips-7.12 --cflags‘
plug.c -o plug.o

example% gcc -shared plug.o
-o double.plg

You can now use double.plgwith any of the VIPS
applications which support function dispatch. For ex-
ample:

example% vips -plugin double.plg \
double_integer 12

24
example%

When VIPS starts up, it looks for a directory in
the library directory called vips-, with the vips ma-
jor and minor versions numbers as extensions, and
loads all files in there with the suffix .plg. So
for example, on my machine, the plugin directory is
/usr/lib/vips-7.16 and any plugins in that di-
rectory are automatically loaded into any VIPS pro-
grams on startup.

2.3.2 A more complicated example
This section lists the source for im_extract()’s
function description. Almost all functions in the VIPS
library have descriptors — if you are not sure how to
write a description, it’s usually easiest to copy one from
a similar function in the library.

/* Args to im_extract.

*/
static im_arg_desc

extract_args[] = {
IM_INPUT_IMAGE("input"),
IM_OUTPUT_IMAGE("output"),
IM_INPUT_INT("left"),
IM_INPUT_INT("top"),
IM_INPUT_INT("width"),
IM_INPUT_INT("height"),
IM_INPUT_INT("channel")

};

/* Call im_extract via arg vector.

*/

static int
extract_vec(im_object *argv)
{
IMAGE_BOX box;

box.xstart = *((int *) argv[2]);
box.ystart = *((int *) argv[3]);
box.xsize = *((int *) argv[4]);
box.ysize = *((int *) argv[5]);
box.chsel = *((int *) argv[6]);

return(im_extract(
argv[0], argv[1], &box));

}

/* Description of im_extract.

*/
static im_function
extract_desc = {
"im_extract",
"extract area/band",
IM_FN_PIO | IM_FN_TRANSFORM,
extract_vec,
NUMBER(extract_args),
extract_args

};

2.3.3 Adding new types
The VIPS type mechanism is extensible. User plug-ins
can add new types and user-interfaces can (to a certain
extent) provide interfaces to these user-defined types.

Here is the definition of im_arg_desc:

/* Describe a VIPS command argument.

*/
typedef struct {
char *name;
im_type_desc *desc;
im_print_obj_fn print;

} im_arg_desc;

The name field is the argument name above. The
desc field points to a structure defining the argument
type, and the print field is an (optionally NULL)
pointer to a function which VIPS will call for output ar-
guments after your function successfully completes and
before the object is destroyed. It can be used to print
results to the terminal, or to copy results into a user-
interface layer.

28 CHAPTER 2. VIPS FOR C PROGRAMMERS

/* Success on an argument. This is

* called if the image processing

* function succeeds and should be

* used to (for example) print

* output.

*/
typedef int (*im_print_obj_fn)
(im_object obj);

im_type_desc is defined as:

/* Describe a VIPS type.

*/
typedef struct {

im_arg_type type;
int size;
im_type_flags flags;
im_init_obj_fn init;
im_dest_obj_fn dest;

} im_type_desc;

Where im_arg_type is defined as

/* Type names. You may define your

* own, but if you use one of these,

* then you should use the built-in

* VIPS type converters.

*/
#define IM_TYPE_IMAGEVEC "imagevec"
#define IM_TYPE_DOUBLEVEC "doublevec"
#define IM_TYPE_INTVEC "intvec"
#define IM_TYPE_DOUBLE "double"
#define IM_TYPE_INT "integer"
#define IM_TYPE_COMPLEX "complex"
#define IM_TYPE_STRING "string"
#define IM_TYPE_IMASK "intmask"
#define IM_TYPE_DMASK "doublemask"
#define IM_TYPE_IMAGE "image"
#define IM_TYPE_DISPLAY "display"
#define IM_TYPE_GVALUE "gvalue"
typedef char *im_arg_type;

In other words, it’s just a string. When you add a
new type, you just need to choose a new unique string
to name it. Be aware that the string is printed to the user
by various parts of VIPS, and so needs to be “human-
readable”. The flags are:

/* These bits are ored together to

* make the flags in a type

* descriptor.

*
* IM_TYPE_OUTPUT: set to indicate

* output, otherwise input.

*
* IM_TYPE_ARG: Two ways of making

* an im_object --- with and without

* a command-line string to help you

* along. Arguments with a string

* are thing like IMAGE descriptors,

* which require a filename to

* initialise. Arguments without are

* things like output numbers, where

* making the object simply involves

* allocating storage.

*/

typedef enum {
IM_TYPE_OUTPUT = 0x1,
IM_TYPE_ARG = 0x2

} im_type_flags;

And the init and destroy functions are:

/* Initialise and destroy objects.

* The "str" argument to the init

* function will not be supplied

* if this is not an ARG type.

*/
typedef int (*im_init_obj_fn)

(im_object *obj, char *str);
typedef int (*im_dest_obj_fn)

(im_object obj);

As an example, here is the definition for a new type
of unsigned integers. First, we need to define the init
and print functions. These transform objects of the
type to and from string representation.

/* Init function for unsigned int

* input.

*/
static int
uint_init(im_object *obj, char *str)
{

unsigned int *i = (int *) *obj;

if(sscanf(str, "%d", i) != 1 ||

*i < 0) {
im_error("uint_init",
"bad format");

2.3. FUNCTION DISPATCH AND PLUG-INS 29

return(-1);
}

return(0);
}

/* Print function for unsigned int

* output.

*/
static int
uint_print(im_object obj)
{

unsigned int *i =
(unsigned int *) obj;

printf("%d\n", (int) *i);

return(0);
}

Now we can define the type itself. We make two of
these — one for unsigned int used as input, and one for
output.

/* Name our type.

*/
#define TYPE_UINT "uint"

/* Input unsigned int type.

*/
static im_type_desc input_uint = {

TYPE_UINT, /* Its an int */
sizeof(unsigned int),/* Memory */
IM_TYPE_ARG, /* Needs arg */
uint_init, /* Init */
NULL /* Destroy */

};

/* Output unsigned int type.

*/
static im_type_desc output_uint = {

TYPE_UINT, /* It’s an int */
sizeof(unsigned int),/* Memory */
IM_TYPE_OUTPUT, /* It’s output */
NULL, /* Init */
NULL /* Destroy */

};

Finally, we can define two macros to make structures
of type im_arg_desc for us.

#define INPUT_UINT(S) \
{ S, &input_uint, NULL }

#define OUTPUT_UINT(S) \
{ S, &output_uint, uint_print }

For more examples, see the definitions for the built-in
VIPS types.

2.3.4 Using function dispatch in your ap-
plication

VIPS provides a set of functions for adding new im-
age processing functions to the VIPS function database,
finding functions by name, and calling functions. See
the manual pages for full details.

Adding and removing functions

im_package *im_load_plugin(
const char *name);

This function opens the named file, searches it for a
symbol named package_table, and adds any func-
tions it finds to the VIPS function database. When you
search for a function, any plug-ins are searched first, so
you can override standard VIPS function with your own
code.

The function returns a pointer to the package it added,
or NULL on error.

int im_close_plugins(void)

This function closes all plug-ins, removing then from
the VIPS function database. It returns non-zero on error.

Searching the function database

void *im_map_packages(
im_list_map_fn fn, void *a)

This function applies the argument function fn to
every package in the database, starting with the most
recently added package. As with im_list_map(),
the argument function should return NULL to continue
searching, or non-NULL to terminate the search early.
im_map_packages() returns NULL if fn returned
NULL for all arguments. The extra argument a is car-
ried around by VIPS for your use.

For example, this fragment of code prints the names
of all loaded packages to fd:

30 CHAPTER 2. VIPS FOR C PROGRAMMERS

static void *
print_package_name(im_package *pack,
FILE *fp)

{
(void) fprintf(fp,

"package: \"%s\"\n",
pack->name);

/* Continue search.

*/
return(NULL);

}

static void
print_packages(FILE *fp)
{

(void) im_map_packages(
(im_list_map_fn)
print_package_name, fp);

}

VIPS defines three convenience functions based on
im_map_packages() which simplify searching for
specific functions:

im_function *
im_find_function(char *name)

im_package *
im_find_package(char *name)

im_package *
im_package_of_function(char *name)

Building argument structures and running com-
mands

int im_free_vargv(im_function *fn,
im_object *vargv)

int im_allocate_vargv(
im_function *fn,
im_object *vargv)

These two functions allocate space for and free VIPS
argument lists. The allocate function simply calls
im_malloc() to allocate any store that the types re-
quire (and also initializes it to zero). The free function
just calls im_free() for any storage that was allo-
cated.

Note that neither of these functions calls the init,
dest or print functions for the types — that’s up to
you.

int im_run_command(char *name,
int argc, char **argv)

This function does everything. In effect,

im_run_command("im_invert", 2,
{ "fred.v", "fred2.v", NULL })

is exactly equivalent to

system("vips im_invert fred.v "
"fred2.v")

but no process is forked.

2.4 The VIPS base class:
VipsObject

VIPS is in the process of moving to an object system
based on GObject. You can read about the GObjec
library at the GTK+ website:

http://www.gtk.org

We’ve implemented two new subsystems
(VipsFormat and VipsInterpolate) on top
of VipsObject but not yet moved the core VIPS
types over. As a result, VipsObject is still develop-
ing and is likely to change in the next release.

This section quickly summarises enough of the
VipsObject system to let you use the two derived
APIs but that’s all. Full documentation will come when
this system stabilises.

2.4.1 Properties
Like the rest of VIPS, VipsObject is a functional
type. You can set properties during object construction,
but not after that point. You may read properties at any
time after construction, but not before.

To enforce these rules, VIPS extends the standard
GObject property system and adds a new phase to ob-
ject creation. An object has the following stages in its
life:

Lookup

vips_type_find() is a convenience function that
looks up a type by its nickname relative to a base class.
For example:

2.5. IMAGE FORMATS 31

GType type =
vips_type_find("VipsInterpolate", "bilinear");

finds a subclass of VipsInterpolate nicknamed
‘bilinear’. You can look up types by their full
name of course, but these can be rather unwieldy
(VipsInterpolateBilinear in this case, for ex-
ample).

Create

Build an instance with g_object_new(). For exam-
ple:

VipsObject *object =
g_object_new(type,

"sharpness", 12.0,
NULL);

You can set any of the object’s properties in the con-
structor. You can continue to set, but not read, any other
properties, for example:

g_object_set(object,
"sharpness", 12.0,
NULL);

You can loop over an object’s required and optional
parameters with vips_argument_map().

Build

Once all of the required any any of the op-
tional object parameters have been set, call
vips_object_build():

int vips_object_build(VipsObject *object);

This function checks that all the parameters have been
set correctly and starts the object working. It returns
non-zero on error, setting im_error_string().

Use

The object is now fully working. You can read results
from it, or pass it on other objects. When you’re finished
with it, drop your reference to end its life.

g_object_unref(object);

2.4.2 Convenience functions
Two functions simplify building and printing objects.
vips_object_new_from_string() makes a
new object which is a subclass of a named base class.

VipsObject *
vips_object_new_from_string(
const char *basename, const char *p);

This is the function used by
IM_INPUT_INTERPOLATE(), for example, to
parse command-line arguments. The syntax is:

nickname [(required-arg1,
...
required-argn,
optional-arg-name = value,
...
optional-argm-name = value)]

So values for all the required arguments, in the correct
order, then name = value for all the optional arguments
you want to set. Parameters may be enclosed in round
or curly braces.
vips_object_to_string() is the exact oppo-

site: it generates the construct string for any constructed
VipsObject.
vips_object_new() wraps up the business of

creating and checking an object. It makes the object,
uses the supplied function to attach any arguments, then
builds the object and returns NULL on failure or the new
object on success.

A switch to the vips command-line program is
handy for listing subtypes of VipsObject. Try:

$ vips --list classes

2.5 Image formats
VIPS has a simple system for adding support for new
image file formats. You can ask VIPS to find a for-
mat to load a file with or to select a image file writer
based on a filename. Convenience functions copy a file
to an IMAGE, or an IMAGE to a file. New formats may
be added to VIPS by simply defining a new subclass of
VipsFormat.

This is a parallel API to im_open(), see §2.2.4 on
page 15. The format system is useful for images which
are large or slow to open, because you pass a descriptor

32 CHAPTER 2. VIPS FOR C PROGRAMMERS

to write to and so control how and where the decom-
pressed image is held. im_open() is useful for im-
ages in formats which can be directly read from disc,
since you will avoid a copy operation and can directly
control the disc file. The inplace operations (see §4.2.8
on page 67), for example, will only work directly on
disc images if you use im_open().

2.5.1 How a format is represented
See the man page for VipsFormat for full details, but
briefly, an image format consists of the following items:

• A name, a name that can be shows to the user, and
a list of possible filename suffixes (.tif, for ex-
ample)

• A function which tests for a file being in that for-
mat, a function which loads just the header of the
file (that is, it reads properties like width and height
and does not read any pixel data) and a function
which loads the pixel data

• A function which will write an IMAGE to a file in
the format

• And finally a function which examines a file in
the format and returns flags indicating how VIPS
should deal with the file. The only flag in the cur-
rent version is one indicating that the file can be
opened lazily

2.5.2 The format class
The interface to the format system is defined by the ab-
stract base class VipsFormat. Formats subclass this
and implement some or all of the methods. Any of the
functions may be left NULL and VIPS will try to make
do with what you do supply. Of course a format with all
functions as NULL will not be very useful.

As an example, Figure 2.9 on page 35 shows how to
register a new format in a plugin.

2.5.3 Finding a format
You can loop over the subclasses of VipsFormat in
order of priority with vips_format_map(). Like
all the map functions in VIPS, this take a function and
applies it to every element in the table until the function
returns non-zero or until the table ends.

You find an VipsFormatClass to use to open a
file with vips_format_for_file(). This finds
the first format whose is_a() function returns true or
whose suffix list matches the suffix of the filename, set-
ting an error message and returning NULL if no format
is found.

You find a format to write a file with
vips_format_for_name(). This returns the
first format with a save function whose suffix list
matches the suffix of the supplied filename.

2.5.4 Convenience functions
A pair of convenience functions,
vips_format_write() and
vips_format_read(), will copy an image to
and from disc using the appropriate format.

2.6 Interpolators
VIPS has a general system for representing pixel in-
terpolators. You can select an interpolator to pass to
other VIPS operations, such as im_affinei(), you
can add new interpolators, and you can write operations
which take a general interpolator as a parameter.

An interpolator is a function of the form:

typedef void (*VipsInterpolateMethod)(VipsInterpolate *,
PEL *out, REGION *in, double x, double y);

given the set of input pixels in, it has to calculate a
value for the fractional position (x, y) and write this
value to the memory pointed to by out.

VIPS uses corner convention, so the value of pixel
(0, 0) is the value of the surface the interpolator fits at
the fractional position (0.0, 0.0).

2.6.1 How an interpolator is represented
See the man page for VipsInterpolate for full
details, but briefly, an interpolator is a subclass
of VipsInterpolate implementing the following
items:

• An interpolation method, with the type signature
above.

• A function get_window_size() which re-
turns the size of the area of pixels that the inter-
polator needs in order to calculate a value. For ex-
ample, a bilinear interpolator needs the four pixels

2.6. INTERPOLATORS 33

static const char *my_suffs[] = { ".me", NULL };

static int
is_myformat(const char *filename)
{

unsigned char buf[2];

if(im__get_bytes(filename, buf, 2) &&
(int) buf[0] == 0xff &&
(int) buf[1] == 0xd8)
return(1);

return(0);
}

// This format adds no new members.
typedef VipsFormat VipsFormatMyformat;
typedef VipsFormatClass VipsFormatMyformatClass;

static void
vips_format_myformat_class_init(VipsFormatMyformatClass *class)
{

VipsObjectClass *object_class = (VipsObjectClass *) class;
VipsFormatClass *format_class = (VipsFormatClass *) class;

object_class->nickname = "myformat";
object_class->description = _("My format");

format_class->is_a = is_myformat;
format_class->header = my_header;
format_class->load = my_read;
format_class->save = my_write;
format_class->get_flags = my_get_flags;
format_class->priority = 100;
format_class->suffs = my_suffs;

}

static void
vips_format_myformat_init(VipsFormatMyformat *object)
{
}

G_DEFINE_TYPE(VipsFormatMyformat, vips_format_myformat, VIPS_TYPE_FORMAT);

char *
g_module_check_init(GModule *self)
{

// register the type
vips_format_myformat_get_type();

}

Figure 2.9: Registering a format in a plugin

34 CHAPTER 2. VIPS FOR C PROGRAMMERS

surrounding the point to be calculated, or a 2 by 2
window, so window size should be 2.

• Or if the window size is constant, you can leave
get_window_size() NULL and just set the
int value window_size.

2.6.2 A sample interpolator
As an example, Figure 2.10 on page 36 shows how to
register a new interpolator in a plugin.

2.6.3 Writing a VIPS operation that takes
an interpolator as an argument

Operations just take a VipsInterpolate as an ar-
gument, for example:

int im_affinei_all(IMAGE *in, IMAGE *out,
VipsInterpolate *interpolate,
double a, double b, double c, double d,
double dx, double dy);

To use the interpolator, use
vips_interpolate():

void vips_interpolate(VipsInterpolate *interpolate,
PEL *out, REGION *in, double x, double y);

This looks up the interpolate method for the object and
calls it for you.

You can save the cost of the lookup in an inner loop
with vips_interpolate_get_method():

VipsInterpolateMethod
vips_interpolate_get_method(

VipsInterpolate *interpolate);

2.6.4 Passing an interpolator to a VIPS
operation

You can build an instance of a VipsInterpolator
with the vips_object_*() family of functions, see
§2.4 on page 32.

Convenience functions return a static instance of one
of the standard interpolators:

VipsInterpolate *vips_interpolate_nearest_static(void);
VipsInterpolate *vips_interpolate_bilinear_static(void);
VipsInterpolate *vips_interpolate_bicubic_static(void);

Don’t free the result.
Finally, vips_interpolate_new() makes a

VipsInterpolate from a nickname:

VipsInterpolate *vips_interpolate_new(const char *nickname);

For example:

VipsInterpolate *interpolate = vips_interpolate_new("nohalo");

You must drop your ref after you’re done with the object
with g_object_unref().

2.6. INTERPOLATORS 35

// This interpolator adds no new members.
typedef VipsInterpolate Myinterpolator;
typedef VipsInterpolateClass MyinterpolatorClass;

G_DEFINE_TYPE(Myinterpolator, myinterpolator, VIPS_TYPE_INTERPOLATE);

static void
myinterpolator_interpolate(VipsInterpolate *interpolate,
PEL *out, REGION *in, double x, double y)
{

MyinterpolatorClass *class =
MYINTERPOLATOR_GET_CLASS(interpolate);

/* Nearest-neighbor.

*/
memcpy(out,

IM_REGION_ADDR(in, floor(x), floor(y)),
IM_IMAGE_SIZEOF_PEL(in->im));

}

static void
myinterpolator_class_init(MyinterpolatorClass *class)
{

VipsObjectClass *object_class = (VipsObjectClass *) class;
VipsInterpolateClass *interpolate_class = (VipsInterpolateClass *) class;

object_class->nickname = "myinterpolator";
object_class->description = _("My interpolator");

interpolate_class->interpolate = myinterpolator_interpolate;
}

static void
myinterpolate_init(Myinterpolate *object)
{
}

char *
g_module_check_init(GModule *self)
{

// register the type
myinterpolator_get_type();

}

Figure 2.10: Registering an interpolator in a plugin

36 CHAPTER 2. VIPS FOR C PROGRAMMERS

Chapter 3

Writing VIPS operations

3.1 Introduction

This chapter explains how to write image processing op-
erations using the VIPS image I/O (input-output) sys-
tem. For background, you should probably take a look
at §2.1 on page 13. This is supposed to be a tutorial,
if you need detailed information on any particular func-
tion, use the on-line UNIX manual pages.

3.1.1 Why use VIPS?

If you use the VIPS image I/O system, you get a number
of benefits:

Threading If your computer has more than one CPU,
the VIPS I/O system will automatically split your
image processing operation into separate threads
(provided you use PIO, see below). You should get
an approximately linear speed-up as you add more
CPUs.

Pipelining Provided you use PIO (again, see below),
VIPS can automatically join operations together. A
sequence of image processing operations will all
execute together, with image data flowing through
the processing pipeline in small pieces. This makes
it possible to perform complex processing on very
large images with no need to worry about storage
management.

Composition Because VIPS can efficiently compose
image processing operations, you can implement
your new operation in small, reusable, easy-to-
understand pieces. VIPS already has a lot of these:
many new operations can be implemented by sim-
ply composing existing operations.

Large files Provided you use PIO and as long as the
underlying OS supports large files (that is, files
larger than 2GB), VIPS operations can work on
files larger than can be addressed with 32 bits on a
plain 32-bit machine. VIPS operations only see 32
bit addresses; the VIPS I/O system transparently
maps these to 64 bit operations for I/O. Large file
support is included on most machines after about
1998.

Abstraction VIPS operations see only arrays of num-
bers in native format. Details of representation
(big/little endian, VIPS/TIFF/JPEG file format,
etc.) are hidden from you.

Interfaces Once you have your image processing oper-
ation implemented, it automatically appears in all
of the VIPS interfaces. VIPS comes with a GUI
(nip2), a UNIX command-line interface (vips)
and a C++ and Python API.

Portability VIPS operations can be compiled on most
unixes, Mac OS X and Windows NT, 2000 and XP
without modification. Mostly.

3.1.2 I/O styles
The I/O system supports three styles of input-output.

Whole-image I/O (WIO) This style is a largely a left-
over from VIPS 6.x. WIO image-processing op-
erations have all of the input image given to them
in a large memory array. They can read any of the
input pels at will with simple pointer arithmetic.

Partial-image I/O (PIO) In this style operations only
have a small part of the input image available to
them at any time. When PIO operations are joined

37

38 CHAPTER 3. WRITING VIPS OPERATIONS

together into a pipeline, images flow through them
in small pieces, with all the operations in a pipeline
executing at the same time.

In-place The third style allows pels to be read and
written anywhere in the image at any time, and
is used by the VIPS in-place operations, such as
im_fastline(). You should only use it for op-
erations which would just be impossibly inefficient
to write with either of the other two styles.

WIO operations are easy to program, but slow and
inflexible when images become large. PIO operations
are harder to program, but scale well as images become
larger, and are automatically parallelized by the VIPS
I/O system.

If you can face it, and if your algorithm can be ex-
pressed in this way, you should write your operations
using PIO. Whichever you choose, applications which
call your operation will see no difference, except in ex-
ecution speed.

If your image processing operation performs no co-
ordinate transformations, that is, if your output image
is the same size as your input image or images, and if
each output pixel depends only upon the pixel at the cor-
responding position in the input images, then you can
use the im_wrapone() and im_wrapmany() oper-
ations. These take a simple buffer-processing operation
supplied by you and wrap it up as a full-blown PIO op-
eration. See §3.3.1 on page 46.

3.2 Programming WIO operations
WIO is the style for you if you want ease of program-
ming, or if your algorithm must have the whole of the
input image available at the same time. For example,
a Fourier transform operation is unable to produce any
output until it has seen the whole of the input image.

3.2.1 Input from an image
In WIO input, the whole of the image data is made avail-
able to the program via the data field of the descriptor.
To make an image ready for reading in this style, pro-
grams should call im_incheck():

int im_incheck(IMAGE *im)

If it succeeds, it returns 0, if it fails, it returns non-zero
and sets im_error(). On success, VIPS guarantees

that all of the user-accessible fields in the descriptor
contain valid data, and that all of the image data may
be read by simply reading from the data field (see be-
low for an example). This will only work for images
less than about 2GB in size.

VIPS has some simple macros to help address calcu-
lations on images:

int IM_IMAGE_SIZEOF_ELEMENT(IMAGE *)
int IM_IMAGE_SIZEOF_PEL(IMAGE *)
int IM_IMAGE_SIZEOF_LINE(IMAGE *)
int IM_IMAGE_N_ELEMENTS(IMAGE *)
char *IM_IMAGE_ADDR(IMAGE *,
int x, int y)

These macros calculate sizeof() a band el-
ement, a pel and a horizontal line of pels.
IM_IMAGE_N_ELEMENTS returns the number of
band elements across an image. IM_IMAGE_ADDR
calculates the address of a pixel in an image. If DEBUG
is defined, it does bounds checking too.

Figure 3.1 on page 41 is a simple WIO operation
which calculates the average of an unsigned char im-
age. It will work for any size image, with any number
of bands. See §3.2.3 on page 42 for techniques for mak-
ing operations which will work for any image type. This
operation might be called from an application with:

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>

void
find_average(char *name)
{
IMAGE *im;
double avg;

if(!(im = im_open(name, "r")) ||
average(im, &avg) ||
im_close(im))
error_exit("failure!");

printf("Average of \"%s\" is %G\n",
name, avg);

}

When you write an image processing operation, you can
test it by writing a VIPS function descriptor and calling

3.2. PROGRAMMING WIO OPERATIONS 39

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>

int
average(IMAGE *im, double *out)
{

int x, y;
long total;

/* Prepare for reading.

*/
if(im_incheck(im))

return(-1);

/* Check that this is the kind of image we can process.

*/
if(im->BandFmt != IM_BANDFMT_UCHAR ||

im->Coding != IM_CODING_NONE) {
im_error("average", "uncoded uchar images only");
return(-1);

}

/* Loop over the image, summing pixels.

*/
total = 0;
for(y = 0; y < im->Ysize; y++) {

unsigned char *p = (unsigned char *) IM_IMAGE_ADDR(im, 0, y);

for(x = 0; x < IM_IMAGE_N_ELEMENTS(im); x++)
total += p[x];

}

/* Calculate average.

*/

*out = (double) total /
(IM_IMAGE_N_ELEMENTS(im) * im->Ysize));

/* Success!

*/
return(0);

}

Figure 3.1: Find average of image

40 CHAPTER 3. WRITING VIPS OPERATIONS

it from the vips universal main program, or from the
nip2 interface. See §2.1 on page 13.

3.2.2 Output to an image
Before attempting WIO output, programs should call
im_outcheck(). It has type:

int im_outcheck(IMAGE *im)

If im_outcheck() succeeds, VIPS guarantees that
WIO output is sensible.

Programs should then set fields in the output descrip-
tor to describe the sort of image they wish to write (size,
type, and so on) and call im_setupout(). It has
type:

int im_setupout(IMAGE *im)

im_setupout() creates the output file or memory
buffer, using the size and type fields that were filled in
by the program between the calls to im_outcheck()
and im_setupout(), and gets it ready for writing.

Pels are written with im_writeline(). This takes
a y position (pel (0,0) is in the top-left-hand corner of
the image), a descriptor and a pointer to a line of pels.
It has type:

int im_writeline(int y,
IMAGE *im, unsigned char *pels)

Two convenience functions are available to make this
process slightly easier. im_iocheck() is useful for
programs which take one input image and produce one
image output. It simply calls im_incheck() and
im_outcheck(). It has type:

int im_iocheck(IMAGE *in, IMAGE *out)

The second convenience function copies the fields de-
scribing size, type, metadata and history from one image
descriptor to another. It is useful when the output image
will be similar in size and type to the input image. It has
type:

int im_cp_desc(IMAGE *out, IMAGE *in)

There’s also im_cp_descv(), see the man page.
Figure 3.2 on page 43 is a WIO VIPS operation which

finds the photographic negative of an unsigned char im-
age. See §2.2.10 on page 21 for an explanation of
IM_ARRAY. This operation might be called from an ap-
plication with:

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>

void
find_negative(char *inn, char *outn)
{
IMAGE *in, *out;

if(!(in = im_open(inn, "r")) ||
!(out = im_open(outn, "w")) ||
invert(in, out) ||
im_updatehist(out, "invert") ||
im_close(in) ||
im_close(out))
error_exit("failure!");

}

See §2.2.7 on page 21 for an explanation of the call
to im_updatehist().

3.2.3 Polymorphism

Most image processing operations in the VIPS
library can operate on images of any type
(IM_BANDFMT_UCHAR, as in our examples above,
also IM_BANDFMT_UINT etc.). This is usually imple-
mented with code replication: the operation contains
loops for processing every kind of image, and when
called, invokes the appropriate loop for the image it is
given.

As an example, figure 3.3 calculates exp() for every
pel in an image. If the input image is double, we write
double output. If it is any other non-complex type, we
write float. If it is complex, we flag an error (exp()
of a complex number is fiddly). The example uses an
image type predicate, im_iscomplex(). There are
a number of these predicate functions, see the manual
page.

3.3 Programming PIO functions

The VIPS PIO system has a number of advantages over
WIO, as summarised in the introduction. On the other
hand, they are a bit more complicated.

3.3. PROGRAMMING PIO FUNCTIONS 41

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>
#include <vips/util.h>

int
invert(IMAGE *in, IMAGE *out)
{

int x, y;
unsigned char *buffer;

/* Check images.

*/
if(im_iocheck(in, out))

return(-1);
if(in->BandFmt != IM_BANDFMT_UCHAR || in->Coding != IM_CODING_NONE) {

im_error("invert", "uncoded uchar images only");
return(-1);

}

/* Make output image.

*/
if(im_cp_desc(out, in))

return(-1);
if(im_setupout(out))

return(-1);

/* Allocate a line buffer and make sure it will be freed correctly.

*/
if(!(buffer = IM_ARRAY(out,

IM_IMAGE_SIZEOF_LINE(in), unsigned char)))
return(-1);

/* Loop over the image!

*/
for(y = 0; y < in->Ysize; y++) {

unsigned char *p = (unsigned char *) IM_IMAGE_ADDR(in, 0, y);

for(x = 0; x < IM_IMAGE_N_ELEMENTS(in); x++)
buffer[x] = 255 - p[x];

if(im_writeline(y, out, buffer))
return(-1);

}

return(0);
}

Figure 3.2: Invert an image

42 CHAPTER 3. WRITING VIPS OPERATIONS

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <vips/vips.h>
#include <vips/util.h>

/* Exponential transform.

*/
int
exptra(IMAGE *in, IMAGE *out)
{

int x, y;
unsigned char *buffer;

/* Check descriptors.

*/
if(im_iocheck(in, out))

return(-1);
if(in->Coding != IM_CODING_NONE || im_iscomplex(in)) {

im_error("exptra", "uncoded non-complex only");
return(-1);

}

/* Make output image.

*/
if(im_cp_desc(out, in))

return(-1);
if(in->BandFmt != IM_BANDFMT_DOUBLE)

out->BandFmt = IM_BANDFMT_FLOAT;
if(im_setupout(out))

return(-1);

Figure 3.3: Calculate exp() for an image

3.3. PROGRAMMING PIO FUNCTIONS 43

/* Allocate a line buffer.

*/
if(!(buffer = IM_ARRAY(out, IM_IMAGE_SIZEOF_LINE(in), unsigned char)))

return(-1);

/* Our inner loop, parameterised for both the input and output

* types. Note the use of ‘\’, since macros have to be all on

* one line.

*/
#define loop(IN, OUT) { \

for(y = 0; y < in->Ysize; y++) { \
IN *p = (IN *) IM_IMAGE_ADDR(in, 0, y); \
OUT *q = (OUT *) buffer; \
\
for(x = 0; x < IM_IMAGE_N_ELEMENTS(in); x++) \

q[x] = exp(p[x]); \
if(im_writeline(y, out, buffer)) \

return(-1); \
} \

}

/* Switch for all the types we can handle.

*/
switch(in->BandFmt) {

case IM_BANDFMT_UCHAR: loop(unsigned char, float); break;
case IM_BANDFMT_CHAR: loop(char, float); break;
case IM_BANDFMT_USHORT:loop(unsigned short, float); break;
case IM_BANDFMT_SHORT: loop(short, float); break;
case IM_BANDFMT_UINT: loop(unsigned int, float); break;
case IM_BANDFMT_INT: loop(int, float); break;
case IM_BANDFMT_FLOAT: loop(float, float); break;
case IM_BANDFMT_DOUBLE:loop(double, double); break;
default:

im_error("exptra", "internal error");
return(-1);

}

/* Success.

*/
return(0);

}

Figure 3.4: Calculate exp() for an image (cont)

44 CHAPTER 3. WRITING VIPS OPERATIONS

3.3.1 Easy PIO with im wrapone() and
im wrapmany()

PIO is a very general image IO system, and be-
cause of this flexibility, can be complicated to pro-
gram. As a convenience, VIPS offers an easy-to-use
layer over PIO with the funtions im_wrapone() and
im_wrapmany().

If your image processing function is uninterested in
coordinates, that is, if your input and output images are
the same size, and each output pixel depends only upon
the value of the corresponding pixel in the input image
or images, then these functions are for you.

Consider the invert() function of figure 3.2. First,
we have to write the core of this as a buffer-processing
function:

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>

/* p points to a buffer of pixels which

* need inverting, q points to the buffer

* we should write the result to, and n

* is the number of pels present.

*/
static void
invert_buffer(unsigned char *p,

unsigned char *q, int n)
{

int i;

for(i = 0; i < n; i++)
q[i] = 255 - p[i];

}

Now we have to wrap up this very primitive expres-
sion of the invert operation as a PIO function. We use
im_wrapone() to do this. It has type:

int
im_wrapone(IMAGE *in, IMAGE *out,

im_wrapone_fn fn, void *a, void *b)

where:

void
(*im_wrapone_fn)(void *in, void *out,

int n, void *a, void *b)

almost the same type as our buffer-processing function
above. The values a and b are carried around by VIPS
for whatever use you fancy. invert() can now be
written as:

int
invert(IMAGE *in, IMAGE *out)
{

/* Check parameters.

*/
if(in->BandFmt != IM_BANDFMT_UCHAR ||

in->Bands != 1 ||
in->Coding != IM_CODING_NONE) {
im_error("invert", "bad image");
return(-1);

}

/* Set fields in output image.

*/
if(im_cp_desc(out, in))

return(-1);

/* Process! We don’t use either of the

* user parameters in this function,

* so leave them as NULL.

*/
if(im_wrapone(in, out,

(im_wrapone_fn) invert_buffer,
NULL, NULL))
return(-1);

return(0);
}

And that’s all there is to it. This function will have all
of the desirable properties of PIO functions, while being
as easy to program as the WIO invert() earlier in
this chapter.

This version of invert() is not very general: it will
only accept one-band unsigned char images. It is easy
to modify for n-band images:

/* As before, but use one of the user

* parameters to pass in the number of

* bands in the image.

*/
static void
invert_buffer(unsigned char *p,

unsigned char *q, int n,
IMAGE *in)

3.3. PROGRAMMING PIO FUNCTIONS 45

{
int i;
int sz = n * in->Bands;

for(i = 0; i < sz; i++)
q[i] = 255 - p[i];

}

We must also modify invert():

int
invert(IMAGE *in, IMAGE *out)
{

/* Check parameters.

*/
if(in->BandFmt != IM_BANDFMT_UCHAR ||

in->Coding != IM_CODING_NONE) {
im_error("invert", "bad image");
return(-1);

}

/* Set fields in output image.

*/
if(im_cp_desc(out, in))

return(-1);

/* Process! The first user-parameter

* is the number of bands involved.

*/
if(im_wrapone(in, out,

(im_wrapone_fn)invert_buffer,
in, NULL))
return(-1);

return(0);
}

There are two significant hidden traps here. First, in-
side the buffer processing functions, you may only read
the contents of the user parameters a and b, you may not
write to them. This is because on a multi-CPU machine,
several copies of your buffer-processing functions will
be run in parallel — if they all write to the same place,
there will be complete confusion. If you need writeable
parameters (for example, to count and report overflows),
you can’t use im_wrapone(), you’ll have to use the
PIO system in all its gory detail, see below.

Secondly, your buffer processing function may not be
called immediately. VIPS may decide to delay eval-
uation of your operation until long after the call to

invert() has returned. As a result, care is needed
to ensure that you never read anything in your buffer-
processing function that may have been freed. The best
way to ensure this is to use the local resource allocators,
such as im_open_local() and im_malloc().
This issue is discussed at length in the sections below,
and in §2.1 on page 13.
im_wrapone() is for operations which take ex-

actly one input image. VIPS provides a second function,
im_wrapmany(), which works for any number of in-
put images. The type of im_wrapmany() is slightly
different:

int
im_wrapmany(IMAGE **in, IMAGE *out,

im_wrapmany_fn fn, void *a, void *b)

void
(*im_wrapmany_fn)(void **in, void *out,

int n, void *a, void *b)

im_wrapmany() takes a NULL-terminated array of
input images, and creates a NULL-terminated array of
buffers for the use of your buffer processing function. A
function to add two IM_BANDFMT_UCHAR images to
make a IM_BANDFMT_UCHAR image might be written
as:

static void
add_buffer(unsigned char **in,

unsigned short *out, int n,
IMAGE *in)

{
int i;
int sz = n * in->Bands;
unsigned char *p1 = in[0];
unsigned char *p2 = in[1];

for(i = 0; i < sz; i++)
out[i] = p1[i] + p2[i];

}

This can be made into a PIO function with:

int
add_uchar(IMAGE *i1, IMAGE *i2,

IMAGE *out)
{

IMAGE *invec[3];

46 CHAPTER 3. WRITING VIPS OPERATIONS

/* Check parameters. We don’t need to

* check that i1 and i2 are the same

* size, im_wrapmany() does that for

* us.

*/
if(i1->BandFmt != IM_BANDFMT_UCHAR ||

i1->Coding != IM_CODING_NONE ||
i2->BandFmt != IM_BANDFMT_UCHAR ||
i2->Coding != IM_CODING_NONE ||
i1->Bands != i2->Bands) {
im_error("add_uchar", "bad in");
return(-1);

}

/* Set fields in output image. As

* input image, but we want a USHORT.

*/
if(im_cp_desc(out, i1))

return(-1);
out->BandFmt = IM_BANDFMT_USHORT;
out->Bbits = IM_BBITS_SHORT;

/* Process! The first user-parameter

* is the number of bands involved.

* invec is a NULL-terminated array of

* input images.

*/
invec[0] = i1; invec[1] = i2;
invec[2] = NULL;
if(im_wrapmany(invec, out,

(im_wrapone_fn)add_buffer,
i1, NULL))
return(-1);

return(0);
}

3.3.2 Region descriptors
Regions are the next layer of abstraction above image
descriptors. A region is a small part of an image, held
in memory ready for processing. A region is defined as:

typedef struct {
Rect valid;
IMAGE *im;

... and some other private fields,

... used by VIPS for housekeeping
} REGION;

where valid holds the sub-area of image im that this
region represents, and Rect is defined as:

typedef struct {
int left, top;
int width, height;

} Rect;

two macros are available for Rect calculations:

int IM_RECT_RIGHT(Rect *r)
int IM_RECT_BOTTOM(Rect *r)

where IM_RECT_RIGHT() returns left + width,
and IM_RECT_BOTTOM() returns top + height.
A small library of C functions are also avail-
able for Rect algebra, see the manual pages for
im_rect_intersectrect().

Regions are created with im_region_create().
This has type:

REGION *im_region_create(IMAGE *im)

im_region_create() returns a pointer to a new re-
gion structure, or NULL on error. Regions returned by
im_region_create() are blank — they contain no
image data and cannot be read from or written to. See
the next couple of sections for calls to fill regions with
data.

Regions are destroyed with im_region_free().
It has type:

int im_region_free(REGION *reg)

And, as usual, returns 0 on success and non-zero on er-
ror, setting im_error(). You must free all regions
you create. If you close an image without freeing all the
regions defined on that image, the image is just marked
for future closure — it is not actually closed until the
final region is freed. This behaviour helps to prevent
dangling pointers, and it is not difficult to make sure
you free all regions — see the examples below.

3.3.3 Image input with regions
Before you can read from a region, you need to call
im_prepare() to fill the region with image data. It
has type:

int im_prepare(REGION *reg, Rect *r)

3.3. PROGRAMMING PIO FUNCTIONS 47

Area r of the image on which reg has been created
is prepared and attached to the region.

Exactly what this preparation involves depends upon
the image — it can vary from simply adjusting some
pointers, to triggering the evaluation of a series of other
functions. If it returns successfully, im_prepare()
guarantees that all pixels within reg->valid may be
accessed. Note that this may be smaller or larger than
r, since im_prepare() clips r against the size of the
image.

Programs can access image data in the region by call-
ing the macro IM_REGION_ADDR(). It has type

char *IM_REGION_ADDR(REGION *reg,
int x, int y)

Provided that point (x,y) lies inside reg->valid,
IM_REGION_ADDR() returns a pointer to pel (x, y).
Adding to the result of IM_REGION_ADDR() moves
to the right along the line of pels, provided
you stay strictly within reg->valid. Add
IM_REGION_LSKIP() to move down a line, see be-
low. IM_REGION_ADDR() has some other useful fea-
tures — see the manual page.

Other macros are available to ease address calcula-
tion:

int IM_REGION_LSKIP(REGION *reg)
int IM_REGION_N_ELEMENTS(REGION *reg)
int IM_REGION_SIZEOF_LINE(REGION *reg)

These find the number of bytes to add to the result of
IM_REGION_ADDR() to move down a line, the num-
ber of band elements across the region and the number
of bytes across the region.

Figure 3.5 on page 50 is a version of average()
which uses regions rather than WIO input. Two
things: first, we should really be using vips_sink(),
see §3.3.4, to do the rectangle algebra for us. Sec-
ondly, note that we call im_pincheck() rather than
im_incheck(). im_pincheck() signals to the
IO system that you are a PIO-aware function, giving
im_prepare() much more flexibility in the sorts of
preparation it can do. Also see the manual pages for
im_poutcheck() and im_piocheck().

This version of average() can be called in exactly
the same way as the previous one, but this version has
the great advantage of not needing to have the whole of
the input image available at once.

We can do one better than this — if the image is be-
ing split into small pieces, we can assign each piece to

a separate thread of execution and get parallelism. To
support this splitting of tasks, VIPS has the notion of a
sequence.

3.3.4 Splitting into sequences
A sequence comes in three parts: a start function, a pro-
cessing function, and a stop function. When VIPS starts
up a new sequence, it runs the start function. Start func-
tions return sequence values: a void pointer representing
data local to this sequence. VIPS then repeatedly calls
the processing function, passing in the sequence value
and a new piece of image data for processing. Finally,
when processing is complete, VIPS cleans up by calling
the stop function, passing in the sequence value as an
argument. The types look like this:

void *
(*start_fn)(IMAGE *out,

void *a, void *b)
int
(*process_fn)(REGION *reg,

void *seq, void *a, void *b)
int
(*stop_fn)(void *seq, void *a, void *b)

The values a and b are carried around by VIPS for your
use.

For functions like average() which consume im-
ages but produce no image output, VIPS provides
vips_sink(). This has type:

int vips_sink(VipsImage *in,
VipsStart start,
VipsGenerate generate,
VipsStop stop,
void *a, void *b)

VIPS starts one or more sequences, runs one or more
processing functions over image in until all of in has
been consumed, and then closes all of the sequences
down and returns. VIPS guarantees that the regions
the process_fn() is given will be complete and dis-
joint, that is, every pixel in the image will be passed
through exactly one sequence. To make it possible for
the sequences to each contribute to the result of the func-
tion in an orderly manner, VIPS also guarantees that all
start and stop functions are mutually exclusive.

An example should make this clearer. This version of
average() is very similar to the average function in
the VIPS library — it is only missing polymorphism.

48 CHAPTER 3. WRITING VIPS OPERATIONS

#include <stdio.h>
#include <stdlib.h>
#include <vips/vips.h>
#include <vips/region.h>

int
average(IMAGE *im, double *out)
{

int total, i, y;
REGION *reg;
Rect area, *r;

/* Check im.

*/
if(im_pincheck(im))

return(-1);
if(im->BandFmt != IM_BANDFMT_UCHAR || im->Coding != IM_CODING_NONE) {

im_error("average", "uncoded uchar images only");
return(-1);

}

/* Make a region on im which we can use for reading.

*/
if(!(reg = im_region_create(im)))

return(-1);

Figure 3.5: First PIO average of image

3.3. PROGRAMMING PIO FUNCTIONS 49

/* Move area over the image in 100x100 pel chunks.

* im_prepare() will clip against the edges of the image

* for us.

*/
total = 0;
r = ®->valid;
area.width = 100; area.height = 100;
for(area.top = 0; area.top < im->Ysize; area.top += 100)

for(area.left = 0; area.left < im->Xsize;
area.left += 100) {
/* Fill reg with pels.

*/
if(im_prepare(reg, &area)) {

/* We must free the region!

*/
im_region_free(reg);
return(-1);

}

/* Loop over reg, adding to our total.

*/
for(y = r->top; y < IM_RECT_BOTTOM(r); y++) {

unsigned char *p = IM_REGION_ADDR(reg, r->left, y);

for(i = 0; i < IM_REGION_N_ELEMENTS(reg); i++)
total += p[i];

}
}

/* Make sure we free the region.

*/
im_region_free(reg);

/* Find average.

*/

*out = (double) total / (IM_IMAGE_N_ELEMENTS(im) * im->Ysize);

return(0);
}

Figure 3.6: First PIO average of image (cont.)

50 CHAPTER 3. WRITING VIPS OPERATIONS

#include <stdio.h>
#include <stdlib.h>
#include <vips/vips.h>
#include <vips/region.h>

/* Start function for average(). We allocate a small piece of

* storage which this sequence will accumulate its total in. Our

* sequence value is just a pointer to this storage area.

*
* The first of the two pointers VIPS carries around for us is a

* pointer to the space where we store the grand total.

*/
static int *
average_start(IMAGE *out)
{

int *seq = IM_NEW(out, int);

if(!seq)
return(NULL);

*seq = 0;

return(seq);
}

/* Stop function for average(). Add the total which has

* accumulated in our sequence value to the grand total for

* the program.

*/
static int
average_stop(int *seq, int *gtotal)
{

/* Stop functions are mutually exclusive, so we can write

* to gtotal without clashing with any other stop functions.

*/

*gtotal += *seq;

return(0);
}

Figure 3.7: Final PIO average of image

3.3. PROGRAMMING PIO FUNCTIONS 51

/* Process function for average(). Total this region, and

* add that total to the sequence value.

*/
static int
average_process(REGION *reg, int *seq)
{

int total, i, y;
Rect *r = ®->valid;

/* Get the appropriate part of the input image ready.

*/
if(im_prepare(reg, r))

return(-1);

/* Loop over the region.

*/
total = 0;
for(y = r->top; y < IM_RECT_BOTTOM(r); y++) {

unsigned char *p = IM_REGION_ADDR(reg, r->left, y);

for(i = 0; i < IM_REGION_N_ELEMENTS(reg); i++)
total += p[i];

}

/* Add to the total for this sequence.

*/

*seq += total;

return(0);
}

Figure 3.8: Final PIO average of image (cont.)

52 CHAPTER 3. WRITING VIPS OPERATIONS

/* Find average of image.

*/
int
average(IMAGE *im, double *out)
{

/* Accumulate grand total here.

*/
int gtotal = 0;

/* Prepare im for PIO reading.

*/
if(im_pincheck(im))

return(-1);

/* Check it is the sort of thing we can process.

*/
if(im->BandFmt != IM_BANDFMT_UCHAR ||

im->Coding != IM_CODING_NONE) {
im_error("average", "uncoded uchar images only");
return(-1);

}

/* Loop over the image in pieces, and possibly in parallel.

*/
if(vips_sink(im,

average_start, average_process, average_stop,
>otal, NULL))
return(-1);

/* Calculate average.

*/

*out = (double) gtotal / (IM_IMAGE_N_ELEMENTS(im) * im->Ysize);

return(0);
}

Figure 3.9: Final PIO average of image (cont.)

3.3. PROGRAMMING PIO FUNCTIONS 53

There are a couple of variations on
im_prepare(): you can use im_prepare_to()
to force writing to a particular place, and
im_prepare_thread() to use threaded evalu-
ation. See the man pages.

3.3.5 Output to regions

Regions are written to in just the same way they are
read from — by writing to a pointer found with the
IM_REGION_ADDR() macro.
vips_sink() does input — im_generate()

does output. It has the same type as vips_sink():

int
im_generate(IMAGE *out,

void *(*start_fn)(),
int (*process_fn)(),
int (*stop_fn)(),
void *a, void *b)

The region given to the process function is ready for
output. Each time the process function is called, it
should fill in the pels in the region it was given. Note
that, unlike vips_sink(), the areas the process func-
tion is asked to produce are not guaranteed to be either
disjoint or complete. Again, VIPS may start up many
process functions if it sees fit.

Here is invert(), rewritten to use PIO. This
piece of code makes use of a pair of standard start
and stop functions provided by the VIPS library:
im_start_one() and im_stop_one(). They
assume that the first of the two user arguments to
im_generate() is the input image. They are defined
as:

REGION *
im_start_one(IMAGE *out, IMAGE *in)
{

return(im_region_create(in));
}

and:

int
im_stop_one(REGION *seq)
{

return(im_region_free(seq));
}

They are useful for simple functions which expect
only one input image. See the manual page for
im_start_many() for many-input functions.

Functions have some choice about the way they
write their output. Usually, they should just write
to the region they were given by im_generate().
They can, if they wish, set up the region for out-
put to some other place. See the manual page for
im_region_region(). See also the source for
im_copy() and im_extract() for examples of
these tricks.

Note also the call to im_demand_hint(). This
function hints to the IO system, suggesting the sorts of
shapes of region this function is happiest with. VIPS
supports four basic shapes — choosing the correct shape
can have a dramatic effect on the speed of your function.
See the man page for full details.

3.3.6 Callbacks
VIPS lets you attach callbacks to image descriptors.
These are functions you provide that VIPS will call
when certain events occur. There are more callbacks
than are listed here: see the man page for full details.

Close callbacks

These callbacks are invoked just before an image is
closed. They are useful for freeing objects which are
associated with the image. All callbacks are triggered
in the reverse order to the order in which they were at-
tached. This is sometimes important when freeing ob-
jects which contain pointers to other objects. Close call-
backs are guaranteed to be called, and to be called ex-
actly once.

Use im_add_close_callback() to add a close
callback:

typedef int (*im_callback)(void *, void *)
int im_add_close_callback(IMAGE *,

im_callback_fn,
void *, void *)

As with im_generate(), the two void * point-
ers are carried around for you by VIPS and may be used
as your function sees fit.

Preclose callbacks

Preclose callbacks are called before any shutdown has
occured. Everything is still alive and your callback can

54 CHAPTER 3. WRITING VIPS OPERATIONS

#include <stdio.h>
#include <stdlib.h>
#include <vips/vips.h>
#include <vips/region.h>

/* Process function for invert(). Build the pixels in or

* from the appropriate pixels in ir.

*/
static int
invert_process(REGION *or, REGION *ir)
{

Rect *r = &or->valid;
int i, y;

/* Ask for the part of ir we need to make or. In this

* case, the two areas will be the same.

*/
if(im_prepare(ir, r))

return(-1);

/* Loop over or writing pels calculated from ir.

*/
for(y = r->top; y < IM_RECT_BOTTOM(r); y++) {

unsigned char *p = IM_REGION_ADDR(ir, r->left, y);
unsigned char *q = IM_REGION_ADDR(or, r->left, y);

for(i = 0; i < IM_REGION_N_ELEMENTS(or); i++)
q[i] = 255 - p[i];

}

/* Success!

*/
return(0);

}

Figure 3.10: PIO invert

3.3. PROGRAMMING PIO FUNCTIONS 55

/* Invert an image.

*/
int
invert(IMAGE *in, IMAGE *out)
{

/* Check descriptors for PIO compatibility.

*/
if(im_piocheck(in, out))

return(-1);

/* Check input image for compatibility with us.

*/
if(in->BandFmt != IM_BANDFMT_UCHAR || in->Coding != IM_CODING_NONE) {

im_error("invert", "uncoded uchar images only");
return(-1);

}

/* out inherits from in, as before.

*/
if(im_cp_desc(out, in))

return(-1);

/* Set demand hints for out.

*/
if(im_demand_hint(out, IM_THINSTRIP, in, NULL))

return(-1);

/* Build out in pieces, and possibly in parallel!

*/
if(im_generate(out,

im_start_one, invert_process, im_stop_one,
in, NULL))
return(-1);

return(0);
}

Figure 3.11: PIO invert (cont.)

56 CHAPTER 3. WRITING VIPS OPERATIONS

do anything to the image. Preclose callbacks are guaran-
teed to be called, and to be called exactly once. See the
manual page for im_add_preclose_callback()
for full details.

Eval callbacks

These are callbacks which are invoked periodically
by VIPS during evaluation. The callback has ac-
cess to a struct containing information about the
progress of evaluation, useful for user-interfaces
built on top of VIPS. See the manual page for
im_add_eval_callback() for full details.

3.3.7 Memory allocation revisited

When you are using PIO, memory allocation becomes
rather more complicated than it was before. There are
essentially two types of memory which your function
might want to use for working space: memory which is
associated with each instance of your function (remem-
ber that two copies of you function may be joined to-
gether in a pipeline and be running at the same time —
you can’t just use global variables), and memory which
is local to each sequence which VIPS starts on your ar-
gument image.

The first type, memory local to this function instance,
typically holds copies of any parameters passed to your
image processing function, and links to any read-only
tables used by sequences which you run over the image.
This should be allocated in your main function.

The second type of memory, memory local to a se-
quence, should be allocated in a start function. Because
this space is private to a sequence, it may be written
to. Start and stop functions are guaranteed to be single-
threaded, so you may write to the function-local mem-
ory within them.

3.4 Programming in-place func-
tions

VIPS includes a little support for in-place functions —
functions which operate directly on an image, both read-
ing and writing from the same descriptor via the data
pointer. This is an extremely dangerous way to handle
IO, since any bugs in your program will trash your input
image.

Operations of this type should call im_rwcheck()
instead of im_incheck(). im_rwcheck() tries to
get a descriptor ready for in-place writing. For example,
a function which cleared an image to black might be
written as:

#include <stdio.h>
#include <memory.h>

#include <vips/vips.h>

int
black_inplace(IMAGE *im)
{

/* Check that we can RW to im.

*/
if(im_rwcheck(im))

return(-1);

/* Zap the image!

*/
memset(im->data, 0,

IM_IMAGE_SIZEOF_LINE(im) *
im->Ysize);

return(0);
}

This function might be called from an application as:

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>

void
zap(char *name)
{

IMAGE *im;

if(!(im = im_open(name, "rw")) ||
black_inplace(im) ||
im_updatehist(im, "zap image") ||
im_close(im))
error_exit("failure!");

}

Chapter 4

VIPS reference

4.1 Introduction
/bf VIPS reference documentation is in the process of
switching to gtkdoc. Half-done manuals are distributed
with VIPS, and they should be all done by the next ver-
sion.

In the meantime, this old and slightly outdated chap-
ter has been left unchanged from the previous version.

This chapter introduces the functions available in the
VIPS image processing library. For detailed informa-
tion on particular functions, refer to the UNIX on-line
manual pages. Enter (for example):

example% man im_abs

for information on the function im_abs().
All the comand-line vips operations will print help

text too. For example:

example% vips im_extract
usage: vips im_extract input output

left top width height band
where:

input is of type "image"
output is of type "image"
left is of type "integer"
top is of type "integer"
width is of type "integer"
height is of type "integer"
band is of type "integer"

extract area/band, from package
"conversion"

flags: (PIO function)
(coordinate transformer)
(area operation)
(result can be cached)

vips: error calling function
im_run_command: too few arguments

Once you have found a function you need to use, you
can call it from a C program (see §2.1 on page 13), you
can call it from C++ or Python (see §1.1 on page 1),
you can call it from the nip2 ((see the nip Manual), or
SIAM graphical user-interfaces, or you can run it from
the UNIX command line with the vips program. For
example:

$ vips im_vips2tiff cam.v t1.tif none
$ vips im_tiff2vips t1.tif t2.v.v 0
$ vips im_equal cam.v t2.v t3.v
$ vips im_min t3.v
255

VIPS may have been set up at your site with a set of
links which call the vips program for you. You may also
be able to type:

$ im_vips2tiff cam.v t1.tif none
$ im_tiff2vips t1.tif t2.v.v 0
$ im_equal cam.v t2.v t3.v
$ im_min t3.v

There are a few VIPS programs which you cannot run
with vips, either because their arguments are a very
strange, or because they are complete mini-applications
(like vips2dj). These programs are listed in table 4.1,
see the man pages for full details.

4.2 VIPS packages

4.2.1 Arithmetic
See Figure 4.1 on page 62.

Arithmetic functions work on images as if each band
element were a separate number. All operations are
point-to-point — each output element depends exactly

57

58 CHAPTER 4. VIPS REFERENCE

Name Description
binfile Read RAW image
debugim Print an image pixel by pixel
edvips Change fields in a VIPS header
header Print fields from a VIPS header
printlines Print an image a line at a time
vips VIPS universal main program
vips-7.14 VIPS wrapper script
find mosaic Analyse a set of images for overlaps
mergeup Join a set of images together
cooc features Calculate features of a co-occurence matrix
cooc Calculate a co-occurence matrix
glds features Calculate features of a grey-level distribution matrix
glds Calculate a grey-level distribution matrix
simcontr Demonstrate simultaneous contrast
sines Generate a sinusoidal test pattern
spatres Generate a spatial resolution test pattern
squares Generate some squares
batch crop Crop a lot of images
batch image convert File format convert a lot of images
batch rubber sheet Warp a lot of images
light correct Correct a set of images for shading errors
mitsub Format a VIPS image for output to a Mitsubishi 3600
shrink width Shrink to a specific width
vdump VIPS to mono Postscript
vips2dj VIPS to high-quality colour Postscript

Table 4.1: Miscellaneous programs

4.2. VIPS PACKAGES 59

upon the corresponding input element. All (except in
a few cases noted in the manual pages) will work with
images of any type (or any mixture of types), of any size
and of any number of bands.

Arithmetic operations try to preserve precision by in-
creasing the number of bits in the output image when
necessary. Generally, this follows the ANSI C con-
ventions for type promotion — so multiplying two
IM_BANDFMT_UCHAR images together, for example,
produces a IM_BANDFMT_USHORT image, and taking
the im_costra() of a IM_BANDFMT_USHORT im-
age produces a IM_BANDFMT_FLOAT image. The de-
tails of the type conversions are in the manual pages.

4.2.2 Relational
See Figure 4.2 on page 63.

Relational functions compare images to other images
or to constants. They accept any image or pair of im-
ages (provided they are the same size and have the same
number of bands — their types may differ) and produce
a IM_BANDFMT_UCHAR image with the same number
of bands as the input image, with 255 in every band el-
ement for which the condition is true and 0 elsewhere.

They may be combined with the boolean functions to
form complex relational conditions. Use im_max()
(or im_min()) to find out if a condition is true (or
false) for a whole image.

4.2.3 Boolean
See Figure 4.3 on page 63.

The boolean functions perform boolean arithmetic on
pairs of IM_BANDFMT_UCHAR images. They are use-
ful for combining the results of the relational and mor-
phological functions. You can use im_eorconst()
with 255 as im_not().

4.2.4 Colour
See Figure 4.5 on page 65.

The colour functions can be divided into two main
types. First, functions to transform images between the
different colour spaces supported by VIPS: RGB (also
referred to as disp), sRGB, XYZ, Yxy, Lab, LabQ,
LabS, LCh and UCS), and second, functions for calcu-
lating colour difference metrics. Figure 4.4 shows how
the VIPS colour spaces interconvert.

The colour spaces supported by VIPS are:

LabQ This is the principal VIPS colorimetric storage
format. See the man page for im_LabQ2Lab()
for an explanation. You cannot perform calcula-
tions on LabQ images. They are for storage only.
Also refered to as LABPACK.

LabS This format represents coordinates
in CIE L∗a∗b∗ space as a three- band
IM_BANDFMT_SHORT image, scaled to fit
the full range of bits. It is the best format for
computation, being relatively compact, quick, and
accurate. Colour values expressed in this way are
hard to visualise.

Lab Lab colourspace represents CIE L∗a∗b∗ colour
values with a three-band IM_BANDFMT_FLOAT
image. This is the simplest format for general
work: adding the constant 50 to the L channel, for
example, has the expected result.

XYZ CIE XYZ colour space represented as a three-band
IM_BANDFMT_FLOAT image.

XYZ CIE Yxy colour space represented as a three-band
IM_BANDFMT_FLOAT image.

RGB (also refered to as disp) This format is similar
to the RGB colour systems used in other packages.
If you want to export your image to a PC, for ex-
ample, convert your colorimetric image to RGB,
then turn it to TIFF with im_vips2tiff().
You need to supply a structure which charac-
terises your display. See the manual page for
im_col_XYZ2rgb() for hints on these guys.

VIPS also supports sRGB. This is a version of
RGB with a carefully defined and standard conver-
sion from XYZ. See:

http://www.color.org/

LCh Like Lab, but rectangular ab coordinates are re-
placed with polar Ch (Chroma and hue) coordi-
nates. Hue angles are expressed in degrees.

UCS A colour space based on the CMC(1:1) colour dif-
ference measurement. This is a highly uniform
colour space, much better than CIE L∗a∗b∗ for
expressing small differences. Conversions to and
from UCS are extremely slow.

60 CHAPTER 4. VIPS REFERENCE

$ vips --list arithmetic
im_abs - absolute value
im_acostra - acos of image (result in degrees)
im_add - add two images
im_asintra - asin of image (result in degrees)
im_atantra - atan of image (result in degrees)
im_avg - average value of image
im_point_bilinear - interpolate value at single point, linearly
im_bandmean - average image bands
im_ceil - round to smallest integal value not less than
im_cmulnorm - multiply two complex images, normalising output
im_costra - cos of image (angles in degrees)
im_cross_phase - phase of cross power spectrum of two complex images
im_deviate - standard deviation of image
im_divide - divide two images
im_exp10tra - 10ˆpel of image
im_expntra - xˆpel of image
im_expntra_vec - [x,y,z]ˆpel of image
im_exptra - eˆpel of image
im_fav4 - average of 4 images
im_floor - round to largest integal value not greater than
im_gadd - calculate a*in1 + b*in2 + c = outfile
im_invert - photographic negative
im_lintra - calculate a*in + b = outfile
im_linreg - pixelwise linear regression
im_lintra_vec - calculate a*in + b -> out, a and b vectors
im_litecor - calculate max(white)*factor*(in/white), if clip == 1
im_log10tra - log10 of image
im_logtra - ln of image
im_max - maximum value of image
im_maxpos - position of maximum value of image
im_maxpos_avg - position of maximum value of image, averaging in case of draw
im_maxpos_vec - position and value of n maxima of image
im_measure - measure averages of a grid of patches
im_min - minimum value of image
im_minpos - position of minimum value of image
im_minpos_vec - position and value of n minima of image
im_multiply - multiply two images
im_powtra - pelˆx ofbuildimage
im_powtra_vec - pelˆ[x,y,z] of image
im_remainder - remainder after integer division
im_remainderconst - remainder after integer division by a constant
im_remainderconst_vec - remainder after integer division by a vector of constants
im_rint - round to nearest integal value
im_sign - unit vector in direction of value
im_sintra - sin of image (angles in degrees)
im_stats - many image statistics in one pass
im_subtract - subtract two images
im_tantra - tan of image (angles in degrees)

Figure 4.1: Arithmetic functions

4.2. VIPS PACKAGES 61

$ vips --list relational
im_blend - use cond image to blend between images in1 and in2
im_equal - two images equal in value
im_equal_vec - image equals doublevec
im_equalconst - image equals const
im_ifthenelse - use cond image to choose pels from image in1 or in2
im_less - in1 less than in2 in value
im_less_vec - in less than doublevec
im_lessconst - in less than const
im_lesseq - in1 less than or equal to in2 in value
im_lesseq_vec - in less than or equal to doublevec
im_lesseqconst - in less than or equal to const
im_more - in1 more than in2 in value
im_more_vec - in more than doublevec
im_moreconst - in more than const
im_moreeq - in1 more than or equal to in2 in value
im_moreeq_vec - in more than or equal to doublevec
im_moreeqconst - in more than or equal to const
im_notequal - two images not equal in value
im_notequal_vec - image does not equal doublevec
im_notequalconst - image does not equal const

Figure 4.2: Relational functions

$ vips --list boolean
im_andimage - bitwise and of two images
im_andimageconst - bitwise and of an image with a constant
im_andimage_vec - bitwise and of an image with a vector constant
im_orimage - bitwise or of two images
im_orimageconst - bitwise or of an image with a constant
im_orimage_vec - bitwise or of an image with a vector constant
im_eorimage - bitwise eor of two images
im_eorimageconst - bitwise eor of an image with a constant
im_eorimage_vec - bitwise eor of an image with a vector constant
im_shiftleft - shift integer image n bits to left
im_shiftright - shift integer image n bits to right

Figure 4.3: Boolean functions

62 CHAPTER 4. VIPS REFERENCE

Figure 4.4: VIPS colour space conversion

All VIPS colourspaces assume a D65 illuminant.
The colour-difference functions calculate either ∆E

CIE L∗a∗b∗ (1976 or 2000) or ∆E CMC(1:1) on two
images in Lab, XYZ or disp colour space.

4.2.5 Conversion
See Figure 4.6 on page 66.

These functions may be split into three broad groups:
functions which convert between the VIPS numeric for-
mats (im_clip2fmt(), for example, converts an im-
age of any type to the specified IM_BANDFMT), func-
tions supporting complex arithmetic (im_c2amph(),
for example, converts a complex image from rectangu-
lar to polar co ordinates) and functions which perform
some simple geometric conversion (im_extract()
forms a sub-image).
gbandjoin and the C function

im_gbandjoin() will do a bandwise join of
many images at the same time. See the manual pages.

4.2.6 Matricies
See Figure 4.8 on page 68.

VIPS uses matricies for morphological operations,
for convolutions, and for some colour-space con-
versions. There are two types of matrix: inte-
ger (INTMASK) and double precision floating point
(DOUBLEMASK).

For convenience, both types are stored in files as
ASCII. The first line of the file should start with the ma-
trix dimensions, width first, then on the same line an
optional scale and offset. The two size fields should be
integers; the scale and offset may be floats. Subsequent
lines should contain the matrix elements, one row per
line. The scale and offset are the conventional ones used
to represent non-integer values in convolution masks —
in other words:

result =
value

scale
+ offset

If the scale and offset are missing, they default to 1.0
and 0.0. See the sections on convolution for more on the
use of these fields. So as an example, a 4 by 4 identity
matrix would be stored as:

4 4
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

And a 3 by 3 mask for block averaging with convolu-
tion might be stored as:

3 3 9 0
1 1 1
1 1 1
1 1 1

4.2. VIPS PACKAGES 63

$ vips --list colour
im_LCh2Lab - convert LCh to Lab
im_LCh2UCS - convert LCh to UCS
im_Lab2LCh - convert Lab to LCh
im_Lab2LabQ - convert Lab to LabQ
im_Lab2LabS - convert Lab to LabS
im_Lab2UCS - convert Lab to UCS
im_Lab2XYZ - convert D65 Lab to XYZ
im_Lab2XYZ_temp - convert Lab to XYZ, with a specified colour temperature
im_Lab2disp - convert Lab to displayable
im_LabQ2LabS - convert LabQ to LabS
im_LabQ2Lab - convert LabQ to Lab
im_LabQ2XYZ - convert LabQ to XYZ
im_LabQ2disp - convert LabQ to displayable
im_LabS2LabQ - convert LabS to LabQ
im_LabS2Lab - convert LabS to Lab
im_UCS2LCh - convert UCS to LCh
im_UCS2Lab - convert UCS to Lab
im_UCS2XYZ - convert UCS to XYZ
im_XYZ2Lab - convert D65 XYZ to Lab
im_XYZ2Lab_temp - convert XYZ to Lab, with a specified colour temperature
im_XYZ2UCS - convert XYZ to UCS
im_XYZ2Yxy - convert XYZ to Yxy
im_XYZ2disp - convert XYZ to displayble
im_XYZ2sRGB - convert XYZ to sRGB
im_Yxy2XYZ - convert Yxy to XYZ
im_dE00_fromLab - calculate delta-E CIE2000 for two Lab images
im_dECMC_fromLab - calculate delta-E CMC(1:1) for two Lab images
im_dECMC_fromdisp - calculate delta-E CMC(1:1) for two displayable images
im_dE_fromLab - calculate delta-E for two Lab images
im_dE_fromXYZ - calculate delta-E for two XYZ images
im_dE_fromdisp - calculate delta-E for two displayable images
im_disp2Lab - convert displayable to Lab
im_disp2XYZ - convert displayable to XYZ
im_float2rad - convert float to Radiance packed
im_icc_ac2rc - convert LAB from AC to RC using an ICC profile
im_icc_export - convert a float LAB to an 8-bit device image with an ICC profile
im_icc_export_depth - convert a float LAB to device space with an ICC profile
im_icc_import - convert a device image to float LAB with an ICC profile
im_icc_import_embedded - convert a device image to float LAB using the embedded profile
im_icc_present - test for presence of ICC library
im_icc_transform - convert between two device images with a pair of ICC profiles
im_lab_morph - morph colourspace of a LAB image
im_rad2float - convert Radiance packed to float
im_sRGB2XYZ - convert sRGB to XYZ

Figure 4.5: Colour functions

64 CHAPTER 4. VIPS REFERENCE

$ vips --list conversion
im_bandjoin - bandwise join of two images
im_bernd - extract from pyramid as jpeg
im_black - generate black image
im_c2amph - convert real and imaginary to phase and amplitude
im_c2imag - extract imaginary part of complex image
im_c2ps - find power spectrum of complex image
im_c2real - extract real part of complex image
im_c2rect - convert phase and amplitude to real and imaginary
im_clip2c - convert to signed 8-bit integer
im_clip2cm - convert to complex
im_clip2d - convert to double-precision float
im_clip2dcm - convert to double complex
im_clip2f - convert to single-precision float
im_clip2fmt - convert image format to ofmt
im_clip2i - convert to signed 32-bit integer
im_clip2s - convert to signed 16-bit integer
im_clip2ui - convert to unsigned 32-bit integer
im_clip2us - convert to unsigned 16-bit integer
im_clip - convert to unsigned 8-bit integer
im_copy - copy image
im_copy_morph - copy image, setting pixel layout
im_copy_swap - copy image, swapping byte order
im_copy_set - copy image, setting informational fields
im_copy_set_meta - copy image, setting a meta field
im_extract_area - extract area
im_extract_areabands - extract area and bands
im_extract_band - extract band
im_extract_bands - extract several bands
im_extract - extract area/band
im_falsecolour - turn luminance changes into chrominance changes
im_fliphor - flip image left-right
im_flipver - flip image top-bottom
im_gbandjoin - bandwise join of many images
im_grid - chop a tall thin image into a grid of images
im_insert - insert sub-image into main image at position
im_insert_noexpand - insert sub-image into main image at position, no expansion
im_lrjoin - join two images left-right
im_mask2vips - convert DOUBLEMASK to VIPS image
im_msb - convert to uchar by discarding bits
im_msb_band - convert to single band uchar by discarding bits
im_print - print string to stdout
im_recomb - linear recombination with mask
im_replicate - replicate an image horizontally and vertically
im_ri2c - join two non-complex images to form complex

Figure 4.6: Conversion functions

4.2. VIPS PACKAGES 65

im_rot180 - rotate image 180 degrees
im_rot270 - rotate image 270 degrees clockwise
im_rot90 - rotate image 90 degrees clockwise
im_scale - scale image linearly to fit range 0-255
im_scaleps - logarithmic scale of image to fit range 0-255
im_rightshift_size - decrease size by a power-of-two factor
im_slice - slice an image using two thresholds
im_subsample - subsample image by integer factors
im_system - run command on image
im_tbjoin - join two images top-bottom
im_text - generate text image
im_thresh - slice an image at a threshold
im_vips2mask - convert VIPS image to DOUBLEMASK
im_wrap - shift image origin, wrapping at sides
im_zoom - simple zoom of an image by integer factors

Figure 4.7: Conversion functions (cont.)

(in other words, sum all the pels in every 3 by 3 area,
and divide by 9).

This matrix contains only integer elements and so
could be used as an argument to functions expecting
both INTMASK and DOUBLEMASKmatricies. However,
masks containing floating-point values (such as the out-
put of im_matinv()) can only be used as arguments
to functions expecting DOUBLEMASKs.

A set of functions for mask input and output are also
available for C-programmers — see the manual pages
for im_read_dmask(). For other matrix functions,
see also the convolution sections and the arithmetic sec-
tions.

4.2.7 Convolution

See Figure 4.9 on page 69.
The functions available in the convolution package

can be split into five main groups.
First, are the convolution functions. The most useful

function is im_conv() which will convolve any non-
complex type with an INTMASK matrix. The output im-
age will have the same size, type, and number of bands
as the input image. Of the other im_conv() functions,
functions whose name ends in _raw do not add a black
border around the output image, functions ending in f
use a DOUBLEMASK matrix and write float (or double)
output, and functions containing sep are for seperable
convolutions. im_compass(), im_lindetect()
and im_gradient() convolve with rotating masks.

im_embed() is used by the convolution functions to
add the border to the output.

Next, are the build functions.
im_gauss_*mask() and its ilk generate gaussian
masks, im_log_*mask() generate logs of Lapla-
cians. im_addgnoise() and im_gaussnoise()
create or add gaussian noise to an image.

Two functions do correlation: im_fastcor() does
a quick and dirty correlation, im_spcor() calculates
true spatial correlation, and is rather slow.

Some functions are provided for analysing images:
im_zerox() counts zero-crossing points in an image,
im_mpercent() finds a threshold that will isolate a
percentage of points in an image.

Finally, im_resize_linear() and
im_shrink() do as you would expect.

4.2.8 In-place operations
See Figure 4.10 on page 70.

A few of the in-place operations are available from
the command-line. Most are not.

4.2.9 Frequency filtering
See Figure 4.11 on page 70.

The basic Fourier functions are im_fwfft() and
im_invfft(), which calculate the fast-fourier trans-
form and inverse transform of an image. Also
im_invfftr(), which just returns the real part of the

66 CHAPTER 4. VIPS REFERENCE

$ vips --list matrix
im_matcat - append matrix in2 to the end of matrix in1
im_matinv - invert matrix
im_matmul - multiply matrix in1 by matrix in2
im_mattrn - transpose matrix

Figure 4.8: Matrix functions

inverse transform. The Fourier image has its origin at
pel (0,0) — for viewing, use im_rotquad() to move
the origin to the centre of the image.

Once an image is in the frequency domain, it can
be filtered by multiplying it with a mask image. The
VIPS mask generator is im_create_fmask() see
the manual page for details of the arguments, but it will
create low pass, high pass, ring pass and band pass fil-
ters, which may each be ideal, Gaussian or Butterworth.
There is also a fractal mask option.

The other functions in the package build on these base
facilities. im_freqflt() transforms an input image
to Fourier space, multiplies it by a mask image, and
transforms it back again. im_flt_image_freq()
will create a mask image of the correct size for you, and
call im_freqflt(). im_disp_ps() will call the
right combinations of functions to make a displayable
power spectrum for an image.

4.2.10 Histograms and LUTs
See Figure 4.12 on page 71.

VIPS represents histograms and look-up tables in the
same way — as images.

They should have either Xsize or Ysize set to 1,
and the other dimension set to the number of elements
in the table. The table can be of any size, have any band
format, and have any number of bands.

Use im_histgr() to find the histogram of an im-
age. Use im_histnD() to find the n-dimensional his-
togram of an n-band image. Perform operations on his-
tograms with im_histcum(), im_histnorm(),
im_histspec(), im_invertlut(). Visualise
histograms with im_histplot(). Use a histogram
(or LUT) to transform an image with im_maplut().
Build a histogram from scratch with im_identity()
or im_identity_ushort().

Use im_lhist*() for local histogram equalisa-
tion, and im_stdif*() for statisticaol differencing.
The im_tone_*() functions are for operations on the

L channel of a LAB image. Other functions are useful
combinations of these basic operations.

4.2.11 Morphology
See Figure 4.13 on page 71.

The morphological functions are used on one-band
IM_BANDFMT_UCHAR binary images (images contain-
ing only zero and not-zero). They search images for par-
ticular patterns of pixels (specified with the mask argu-
ment), either adding or removing pixels when they find
a match. They are useful for cleaning up images — for
example, you might threshold an image, and then use
one of the morphological functions to remove all single
isolated pixels from the result.

If you combine the morphological operators with the
mask rotators (im_rotate_imask45(), for exam-
ple) and apply them repeatedly, you can achieve very
complicated effects: you can thin, prune, fill, open
edges, close gaps, and many others. For example, see
‘Fundamentals of Digital Image Processing’ by A. Jain,
pp 384-388, Prentice-Hall, 1989 for more ideas.

Beware that VIPS reverses the usual image process-
ing convention, by assuming white objects on a black
background.

The mask you give to the morphological functions
should contain only the values 0 (for background), 128
(for don’t care) and 255 (for object). The mask must
have odd length sides — the origin of the mask is taken
to be the centre value. For example, the mask:

3 3
128 255 128
255 0 255
128 255 128

applied to an image with im_erode(), will find all
black pixels 4-way connected with white pixels. Essen-
tially, im_dilate() sets pixels in the output if any
part of the mask matches, whereas im_erode() sets
pixels only if all of the mask matches.

4.2. VIPS PACKAGES 67

$ vips --list convolution
im_addgnoise - add gaussian noise with mean 0 and std. dev. sigma
im_compass - convolve with 8-way rotating integer mask
im_contrast_surface - find high-contrast points in an image
im_contrast_surface_raw - find high-contrast points in an image
im_conv - convolve
im_conv_raw - convolve, no border
im_convf - convolve, with DOUBLEMASK
im_convf_raw - convolve, with DOUBLEMASK, no border
im_convsep - seperable convolution
im_convsep_raw - seperable convolution, no border
im_convsepf - seperable convolution, with DOUBLEMASK
im_convsepf_raw - seperable convolution, with DOUBLEMASK, no border
im_convsub - convolve uchar to uchar, sub-sampling by xskip, yskip
im_dmask_xsize - horizontal size of a doublemask
im_dmask_ysize - vertical size of a doublemask
im_embed - embed in within a set of borders
im_fastcor - fast correlate in2 within in1
im_fastcor_raw - fast correlate in2 within in1, no border
im_gauss_dmask - generate gaussian DOUBLEMASK
im_gauss_imask - generate gaussian INTMASK
im_gauss_imask_sep - generate separable gaussian INTMASK
im_gaussnoise - generate image of gaussian noise with specified statistics
im_grad_x - horizontal difference image
im_grad_y - vertical difference image
im_gradcor - non-normalised correlation of gradient of in2 within in1
im_gradcor_raw - non-normalised correlation of gradient of in2 within in1, no padding
im_gradient - convolve with 2-way rotating mask
im_imask_xsize - horizontal size of an intmask
im_imask_ysize - vertical size of an intmask
im_rank_image - point-wise pixel rank
im_lindetect - convolve with 4-way rotating mask
im_log_dmask - generate laplacian of gaussian DOUBLEMASK
im_log_imask - generate laplacian of gaussian INTMASK
im_maxvalue - point-wise maximum value
im_mpercent - find threshold above which there are percent values
im_phasecor_fft - non-normalised correlation of gradient of in2 within in1
im_rank - rank filter nth element of xsize/ysize window
im_rank_raw - rank filter nth element of xsize/ysize window, no border
im_read_dmask - read matrix of double from file
im_resize_linear - resize to X by Y pixels with linear interpolation
im_rotate_dmask45 - rotate DOUBLEMASK clockwise by 45 degrees
im_rotate_dmask90 - rotate DOUBLEMASK clockwise by 90 degrees
im_rotate_imask45 - rotate INTMASK clockwise by 45 degrees
im_rotate_imask90 - rotate INTMASK clockwise by 90 degrees
im_sharpen - sharpen high frequencies of L channel of LabQ
im_shrink - shrink image by xfac, yfac times
im_spcor - normalised correlation of in2 within in1
im_spcor_raw - normalised correlation of in2 within in1, no black padding
im_stretch3 - stretch 3%, sub-pixel displace by xdisp/ydisp
im_zerox - find +ve or -ve zero crossings in image

Figure 4.9: Convolution functions

68 CHAPTER 4. VIPS REFERENCE

$ vips --list inplace
im_circle - plot circle on image
im_flood_blob_copy - flood while pixel == start pixel
im_insertplace - draw image sub inside image main at position (x,y)
im_line - draw line between points (x1,y1) and (x2,y2)
im_lineset - draw line between points (x1,y1) and (x2,y2)

Figure 4.10: In-place operations

$ vips --list freq_filt
im_create_fmask - create frequency domain filter mask
im_disp_ps - make displayable power spectrum
im_flt_image_freq - frequency domain filter image
im_fractsurf - generate a fractal surface of given dimension
im_freqflt - frequency-domain filter of in with mask
im_fwfft - forward fast-fourier transform
im_rotquad - rotate image quadrants to move origin to centre
im_invfft - inverse fast-fourier transform
im_invfftr - real part of inverse fast-fourier transform

Figure 4.11: Fourier functions

The _raw() version of the functions do not add
a black border to the output. im_cntlines() and
im_profile are occasionally useful for analysing re-
sults.

See the boolean operations im_and(), im_or()
and im_eor() for analogues of the usual set differ-
ence and set union operations.

4.2.12 Mosaicing
See Figure 4.14 on page 72.

These functions are useful for joining many small im-
ages together to make one large image. They can cope
with unstable contrast, and arbitary sub-image layout,
but will not do any geometric correction. The mosaic-
ing functions can be grouped into layers:

The lowest level functions are im_correl(). and
im_affine(). im_correl() searches a large im-
age for a small sub-image, returning the position of the
best sub-image match. im_affine() performs a gen-
eral affine transform on an image: that is, any transform
in which parallel lines remain parallel.

Next, im_lrmerge() and im_tbmerge() blend
two images together left-right or up-down.

Next up are im_lrmosaic() and
im_tbmosaic(). These use the two low-level

merge operations to join two images given just an
approximate overlap as a start point. Optional extra
parameters let you do ’balancing’ too: if your images
have come from a source where there is no precise con-
trol over the exposure (for example, images from a tube
camera, or a set of images scanned from photographic
sources), im_lrmosaic() and im_tbmosaic()
will adjust the contrast of the left image to match the
right, the right to the left, or both to some middle value.

The functions im_lrmosaic1() and
im_tbmosaic1() are first-order analogues of
the basic mosaic functions: they take two tie-points and
use them to rotate and scale the right-hand or bottom
image before starting to join.

Finally, im_global_balance() can be used
to re-balance a mosaic which has been assem-
bled with these functions. It will generally do
a better job than the low-level balancer built into
im_lrmosaic() and im_tbmosaic(). See the
man page. im_remosaic() uses the same tech-
niques, but will reassemble the image from a different
set of source images.

4.2.13 CImg functions
See Figure 4.15 on page 73.

4.2. VIPS PACKAGES 69

$ vips --list histograms_lut
im_gammacorrect - gamma-correct image
im_heq - histogram-equalise image
im_hist - find and graph histogram of image
im_histcum - turn histogram to cumulative histogram
im_histeq - form histogram equalistion LUT
im_histgr - find histogram of image
im_histnD - find 1D, 2D or 3D histogram of image
im_histnorm - form normalised histogram
im_histplot - plot graph of histogram
im_histspec - find histogram which will make pdf of in match ref
im_hsp - match stats of in to stats of ref
im_identity - generate identity histogram
im_identity_ushort - generate ushort identity histogram
im_ismonotonic - test LUT for monotonicity
im_lhisteq - local histogram equalisation
im_lhisteq_raw - local histogram equalisation, no border
im_invertlut - generate correction table from set of measures
im_buildlut - generate LUT table from set of x/y positions
im_maplut - map image through LUT
im_project - find horizontal and vertical projections of an image
im_stdif - statistical differencing
im_stdif_raw - statistical differencing, no border
im_tone_analyse - analyse in and create LUT for tone adjustment
im_tone_build - create LUT for tone adjustment of LabS images
im_tone_build_range - create LUT for tone adjustment
im_tone_map - map L channel of LabS or LabQ image through LUT

Figure 4.12: Histogram/LUT functions

$ vips --list morphology
im_cntlines - count horizontal or vertical lines
im_dilate - dilate image with mask, adding a black border
im_dilate_raw - dilate image with mask
im_erode - erode image with mask, adding a black border
im_erode_raw - erode image with mask
im_profile - find first horizontal/vertical edge

Figure 4.13: Morphological functions

70 CHAPTER 4. VIPS REFERENCE

$ vips --list mosaicing
im_align_bands - align the bands of an image
im_correl - search area around sec for match for area around ref
im__find_lroverlap - search for left-right overlap of ref and sec
im__find_tboverlap - search for top-bottom overlap of ref and sec
im_global_balance - automatically rebuild mosaic with balancing
im_global_balancef - automatically rebuild mosaic with balancing, float output
im_lrmerge - left-right merge of in1 and in2
im_lrmerge1 - first-order left-right merge of ref and sec
im_lrmosaic - left-right mosaic of ref and sec
im_lrmosaic1 - first-order left-right mosaic of ref and sec
im_match_linear - resample ref so that tie-points match
im_match_linear_search - search sec, then resample so that tie-points match
im_maxpos_subpel - subpixel position of maximum of (phase correlation) image
im_remosaic - automatically rebuild mosaic with new files
im_tbmerge - top-bottom merge of in1 and in2
im_tbmerge1 - first-order top-bottom merge of in1 and in2
im_tbmosaic - top-bottom mosaic of in1 and in2
im_tbmosaic1 - first-order top-bottom mosaic of ref and sec

Figure 4.14: Mosaic functions

These operations wrap the anisotropic blur function
from the CImg library. They are useful for removing
noise from images.

4.2.14 Other

See Figure 4.16 on page 73.
These functions generate various test images. You

can combine them with the arithmetic and rotate func-
tions to build more complicated images.

The im_benchmark*() operations are for testing
the VIPS SMP system.

4.2.15 IO functions

See Figure 4.17 on page 73.
These functions are related to the image IO system.

4.2.16 Format functions

See Figure 4.18 on page 74.
These functions convert to and from various image

formats. See §2.5 on page 33 for a nice API over these.
VIPS can read more than these formats, see the man
page for VipsFormat.

4.2.17 Resample functions
See Figure 4.19 on page 74.

These functions resample images with various inter-
polators.

4.2. VIPS PACKAGES 71

$ vips --list cimg
im_greyc - noise-removing filter
im_greyc_mask - noise-removing filter, with a mask

Figure 4.15: CImg functions

$ vips --list other
im_benchmark - do something complicated for testing
im_benchmark2 - do something complicated for testing
im_benchmarkn - do something complicated for testing
im_eye - generate IM_BANDFMT_UCHAR [0,255] frequency/amplitude image
im_grey - generate IM_BANDFMT_UCHAR [0,255] grey scale image
im_feye - generate IM_BANDFMT_FLOAT [-1,1] frequency/amplitude image
im_fgrey - generate IM_BANDFMT_FLOAT [0,1] grey scale image
im_fzone - generate IM_BANDFMT_FLOAT [-1,1] zone plate image
im_make_xy - generate image with pixel value equal to coordinate
im_zone - generate IM_BANDFMT_UCHAR [0,255] zone plate image

Figure 4.16: Other functions

$ vips --list iofuncs
im_binfile - open a headerless binary file
im_cache - cache results of an operation
im_guess_prefix - guess install area
im_guess_libdir - guess library area
im_header_get_type - return field type
im_header_int - extract int fields from header
im_header_double - extract double fields from header
im_header_string - extract string fields from header
im_version - VIPS version number
im_version_string - VIPS version string

Figure 4.17: IO functions

72 CHAPTER 4. VIPS REFERENCE

$ vips --list format
im_csv2vips - read a file in csv format
im_jpeg2vips - convert from jpeg
im_magick2vips - load file with libMagick
im_png2vips - convert PNG file to VIPS image
im_exr2vips - convert an OpenEXR file to VIPS
im_ppm2vips - read a file in pbm/pgm/ppm format
im_analyze2vips - read a file in analyze format
im_tiff2vips - convert TIFF file to VIPS image
im_vips2csv - write an image in csv format
im_vips2jpeg - convert to jpeg
im_vips2mimejpeg - convert to jpeg as mime type on stdout
im_vips2png - convert VIPS image to PNG file
im_vips2ppm - write a file in pbm/pgm/ppm format
im_vips2tiff - convert VIPS image to TIFF file

Figure 4.18: Format functions

$ vips --list resample
im_affine - affine transform
im_affinei - affine transform
im_affinei_all - affine transform of whole image
im_similarity_area - output area xywh of similarity transformation
im_similarity - similarity transformation

Figure 4.19: Resample functions

