VIPS Manual

Version 7.20

John Cupitt, Kirk Martinez

This manual formatted June 9, 2010

ii

Contents

1 VIPS from C++ and Python 1
1.1 Introduction e e e e 1
1.1.1 Ifyouwveusedthe CAPI e 1

1.2 The VIPSfile format e 1
1.2.1 VIPSfileheader 1

1.2.2 Computation formats L. e e 3

1.2.3 Storageformats e 3

1.3 TheVImageclass e e e 3
1.3.1 ConstruCtors o v v vttt e e e e e e e e e e e 3

1.3.2 Fileconversion e e 5

1.3.3 Projection functions L. e 6

1.3.4 Assignment e e 7

1.3.5 Computing with VImages oot vttt it e e e 7

1.3.6 Writingresults e 7

1.3.7 Type CONVEISIONS v v v v v v e e i e e e e e e e e e e e e 8

1.4 TheVMaskclass o e 8
1.4.1 ConsStructors e e e e e 8

1.4.2 Projection functions L. 8

143 AsSignment e e e 8

1.44 Computing with VMask e 9

1.45 VIMask Operations ¢ v v v vt v it b e e e e 9

1.4.6 VDMask OPErations v v v v v v i e e e e e e e e e e e e e 9

1.47 Outputofmasks e 9

1.5 TheVDisplayclass o o o i e e e e 9
1.5.1 ConStructors o it e e e e e e e e 9

1.5.2 Projection functions e 10

1.6 The VErrorclass e 10
1.6.1 ConsStructors e e e 10

1.6.2 Projection functions e 10

1.6.3 Computing wWith VEXrror i v vttt e e e e e e e 10

1.6.4 Convenience function. Lo e 11

2 VIPS for C programmers 13
2.1 Introduction L e e e e e e e e 13
22 Core CAPL e 13
221 Startup ... oL e e e 13

222 Image desCriptors o v vttt e e e e e e e e e e 15

iii

v

CONTENTS

223 Headerfields e 15

224 Openingand closing e e e e e e 15

225 Examples e e 18

22,6 Metadata L e 18

227 HIStOTY o e e e e e 21

22.8 Evalcallbacks 21

2.2.9 Detailed rules fordescriptors 21
2.2.10 Automatic resource deallocation oo o o 21
2.2.11 Errorhandling e 23
2.2.12 Joining operations together L. Lo 23

2.3 Functiondispatchand plug-ins 25
2.3.1 Simplepluginexampleo 26

2.3.2 A morecomplicatedexample L o 29

233 Adding new types e e e e 29

2.3.4 Using function dispatch in your application 31

2.4 The VIPS base class: VipsObject v i v i i it e e e e e e e e e e 32
241 Properties e e e e e 32

24.2 Convenience functionso 33

25 Imageformats L 33
2.5.1 Howaformatisrepresented 34

2.5.2 Theformatclass e 34

253 Findingaformat 34

254 Convenience functionso e e e 34

2.6 Interpolators e e e e e e e e e 34
2.6.1 How aninterpolatorisrepresented Lo 34

2.6.2 Asampleinterpolator 34

2.6.3 Writing a VIPS operation that takes an interpolator as an argument 37

2.6.4 Passing an interpolator toa VIPS operation L. 37
Writing VIPS operations 39
3.1 Introduction 39
31,1 Whyuse VIPS? o oo e 39

312 TOstyles . . . oo oo 39

3.2 Programming WIO operationso e e e 40
32.1 Inputfromanimage 40

322 Outputto animage ot e e e e e e e e e e e e 42

3.2.3 Polymorphism 42

3.3 Programming PIO functions L 42
3.3.1 Easy PIO with im_wrapone () and im_-wrapmany () 46
3.3.2 Region desCriptors v i v e e e e e e e e e e e 48

3.3.3 Imageinput withregions L e 48

3.3.4 Splitting into SEQUENCESt e e e e e e e e e e e 49

335 Output tOT€ZIONS . .« « . v v v v v e 55

33.6 Callbacks L 55

3.3.7 Memory allocation revisited Lo 58

3.4 Programming in-place functions oL 58

CONTENTS v
4 VIPS reference 59
4.1 Introduction e e e e e e e e e e 59
42 VIPSpackages o e e e 59
42.1 Arithmetic e e e e 59

4272 Relational e e e e e e 61

423 Boolean 61

424 Colour e e 61

425 Conversion it e e e e e e e e e e e e e 64

42,6 MatriCies o e e e e e e e e e e e e e 64

427 Convolution o e e e e e e e e e e e e e 67

4.2.8 In-place operations L. e e 67

429 Frequency filtering e e 67
4.2.10 Histogramsand LUTS e 68
4.2.11 Morphology e 68
4212 MOSQAICING o oo i e 70
4213 CImgfunctions o it e 70
4214 Other o 72
4215 TOfunctions o i e e e e e e e e 72
4.2.16 Formatfunctions e e e e e 72
4.2.17 Resample functions L. L e e 72

vi

List of Figures

1.1
1.2

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

invert programin C++ L L L e e e e e 2
invert programin Python L 2
VIPS software architecture 14
Hello World for VIPS e 16
The IMAGE descriptor i i it e e 17
Print width and height of animage 19
Find photographic negative 20
Sum an array of images e e e e e e e 22
Two image-processing operations joined together 24
Threshold an image at the mean value 25
Registering a formatinaplugin L 35
Registering an interpolator inaplugin 36
Find average of image e 41
Invertanimage L e e e e e e 43
Calculate exp () foranimage e 44
Calculate exp () foranimage (cont) 0 i e 45
First PIO average of image e 50
First PIO average of image (cont.) e e 51
Final PIO average of image e 52
Final PIO average of image (cont.) o i i e e 53
Final PIO average of image (cont.) e 54
PIOnvert e e e e 56
PIO invert (CoOnt.) e e e e e e e e e e e e e e e 57
Arithmetic functions 62
Relational functions L 63
Boolean functions e 63
VIPS colour space CONVErsion oo v v v v i ittt e e e 64
Colour functions 65
Conversion functions L e e 66
Conversion functions (CONL.) o e e e e e 67
Matrix functions e 68
Convolution functions L 69
In-place operations e e e 70
Fourier functions 70
Histogram/LUT functions i ittt 71

vii

viii

4.13
4.14
4.15
4.16
4.17
4.18
4.19

LIST OF FIGURES
Morphological functions L. 71
Mosaic functions e e e e e e e e e 72
CImg functions e e e 73
Other functions e e e e e 73
IOfunctions e 73
Format functions e e e e e 74

Resample functions e e e e e e e 74

List of Tables

1.1 VIPSheader e e 4
1.2 Possible values for BandFmt e e e e e e e e e e 4
1.3 Possible values for Coding e 4
1.4 Possible values for Type e e 5
2.1 Argument type MaCIOS« v v v e e e e e e e e e e e e e e e e e e e 27
4.1 Miscellaneous programso e e e e e e 60

ix

Chapter 1

VIPS from C++ and Python

1.1 Introduction

This chapter describes the C++ API for the VIPS image
processing library. The C++ API is as efficient as the C
interface to VIPS, but is far easier to use: almost all cre-
ation, destruction and error handling issues are handled
for you automatically.

The Python interface is a very simple wrapping of this
C++ API generated automatically with SWIG. It adds a
few utility methods noted below, but otherwise the two
interfaces are identical other than language syntax.

1.1.1 If you’ve used the C API

To show how much easier the VIPS C++ API is to

use, compare Figure 2.2.5 on page 20 to Figure 1.1 on

page 2. Figure 1.2 on page 2 is the same thing in Python.
A typical build line for the C++ program might be:

g++ invert.cc \
‘pkg-config vipsCC-7.18 \
——cflags —--1libs"

The key points are:

e You just include <vips/vips> — this then gets
all of the other includes you need. Everything is in
the vips namespace.

o The C++ API replaces all of the VIPS C types
— IMAGE becomes VImage and so on. The
C++ API also includes VDisplay, VMask and

VError.

e Image processing operations are member
functions of the VImage class — here,
VImage (argv[1l]) creates a new VIimage

object using the first argument to initialise it
(the input filename). It then calls the member
function invert (), which inverts the VImage
and returns a new VImage. Finally it calls the
member function write (), which writes the
result image to the named file.

e The VIPS C++ API uses exceptions — the
VError class is covered later. If you run this pro-
gram with a bad input file, for example, you get the
following output:

$ invert jim fred
VIPS error:
"3im" not found

invert:
file

1.2 The VIPS file format

VIPS has its own very simple file format. It is used in-
side VIPS to hold images during computation. You can
save images in VIPS format if you want, but the VIPS
format is not widely used and you may have problems
reading your images into other packages.

If you intend to keep an image, it’s much better to
save it as TIFF, JPEG, PNG, PBM/PGM/PPM or HDR.
VIPS can transparently read and write all these formats.

1.2.1 VIPS file header

All VIPS image files start with a 64-byte header giving
basic information about the image dimensions, see Ta-
ble 1.1 on page 4. This is followed by the image data.
This is usually just the pixel values in native format (ie.
the byte order used by the machine that wrote the file)
laid out left-to-right and top-to-bottom. After the image
data comes a block of optional XML which holds extra

format_for_ file:

#include <iostream>
#include <vips/vips>

CHAPTER 1. VIPS FROM C++ AND PYTHON

" << argv[0] << " infile outfile\n";

(argv[1l]);

(argv[2]);

int
main (int argc, char xxargv)
{
if (argc != 3)
{
std::cerr << "usage:
return (1);
}
try
{
vips::VImage fred
fred.invert () .write
}
catch (vips::VError e)
{
e.perror (argv[0]);
}
return (0);

#!/usr/bin/python

import sys
from vipsCC import =

try:
a = VImage.VImage
a.invert ().write

e.perror (sys.argv[0])

Figure 1.1: invert program in C++

(sys.argv([1l])
(sys.argv[2])
except VError.VError, e:

Figure 1.2: invert program in Python

1.3. THE VIMAGE CLASS

image metadata, such as ICC profiles and image history.
You can use the command-line program header to ex-
tract the XML from an image and edvips to replace
it, see the man pages.

The Type field, the Xres/Yres fields, and the
Xoffset/Yoffset fields are advisory. VIPS main-
tains their value (if you convert an image to CIE L*a*b*
colour space with im_XYZ2Lab (), for example, VIPS
will set Type to be IM_TYPE_LAR), but never uses
these values itself in determining the action of an image
processing function. These fields are to help the user
and to help application programs built on VIPS which
are trying to present image data to the user in a mean-
ingful way.

The BandFmt, Coding and Type fields can take
the values shown in tables 1.2, 1.3 and 1.4. The C++
and Python names for these values are slightly different,
for historical reasons.

1.2.2 Computation formats

This type of image has Coding set to
IM_CODING.NONE. The header is then followed
by a large array of pixels, laid out left-to-right, top-to-
bottom. Each pixel contains the specified number of
bands. Each band has the specified band format, which
may be an 8-, 16- or 32-bit integer (either signed or
unsigned), a single or double precision IEEE floating
point number, or a pair of single or double precision
floats forming a complex number.

All values are stored in the host-machine’s native
number representation (that is, either most-significant
first, as in SPARC and 680x0 machines, or least-
significant first, for Intel and DEC machines). If nec-
essary, the VIPS library will automatically byte-swap
for you during read.

1.2.3 Storage formats

All storage formats have other values for the Coding
field. This release supports IM_CODING_LABQ and
IM_CODING_RAD.

IM_CODING_LABQ stores L*, a* and b* for each
pixel, with 10 bits for L* and 11 bits for each of a*
and b*. These 32 bits are packed into 4 bytes, with the
most significant 8§ bits of each value in the first 3 bytes,
and the left-over bits packed into the final byte as 2:3:3.

This format is a little awkward to process.
Some VIPS functions can work directly on

IM_CODING_LABQ images (im_extract_area (),
for example), but most will require you to unpack the
image to one of the computation formats (for example
with im_LabQ2Lab ()) first.

IM_CODING-RAD stores RGB or XY Z float images
as 8 bytes of mantissa and then 8 bytes of exponent,
shared between the three channels. This coding style is
used by the Radiance family of programs (and the HDR
format) commonly used for HDR imaging. This style of
image is generated when you load an HDR image.

This format is a little awkward to process. Some
VIPS functions can work directly on IM_CODING_RAD
images (im_extract_area (), for example), but
most will require you to unpack the image to one of the
computation formats with im_rad2float () first.

1.3 The VImage class

The VImage classis a layer over the VIPS IMAGE type.
It automates almost all of the image creation and de-
struction issues that complicate the C API, it automates
error handling, and it provides a convenient system for
composing operations.

1.3.1 Constructors

There are two principal constructors for VImage:

VImage: :VImage (const char *name,
const char *mode = "r");
VImage: :VImage () ;

The first form creates a new VImage, linking it to the
named file. mode sets the mode for the file: it can take
the following values:

"r" The named image file is opened read-only. This is
the default mode.

"w" A VImage is created which, when written to, will
write pixels to disc in the specified file. Any exist-
ing file of this name is deleted.

"t" As the "w" mode, but pixels written to the
VImage will be saved in a temporary memory
buffer.

"p" This creates a special ‘partial’ image. Partial im-
ages represent intermediate results, and are used
to join VIPS operations together, see §1.3.5 on
page 7.

CHAPTER 1. VIPS FROM C++ AND PYTHON

Bytes | Represent VIPS name
0-3 VIPS magic number (in hex, 08 f2 f6 b6)
4-7 Number of pels per horizontal line (integer) | Xsize
8-11 Number of horizontal lines (integer) Ysize
12-15 | Number of bands (integer) Bands
16-19 | Unused (legacy) Bbits
20-23 | Band format (eg. IM_BANDFMT_USHORT) | BandFmt
24-27 | Coding type (eg. IM_.CODING_NONE) Coding
28-31 | Type (eg. IM_-TYPE_LAB) Type
32-35 | Horizontal resolution (float, pixels mm™') Xres
36-39 | Vertical resolution (float, pixels mm™1) Yres
40-43 | Unused (legacy) Length
44-45 | Unused (legacy) Compression
4647 | Unused (legacy) Level
48-51 | Horizontal offset of origin Xoffset
52-55 | Vertical offset of origin Yoffset
56-63 | For future expansion (all zeros for now)
Table 1.1: VIPS header
BandFmt C++ and Python name | Value | Meaning
IM_BANDEFMT _NOTSET FMTNOTSET -1
IM_BANDEFMT _UCHAR FMTUCHAR 0 Unsigned 8-bit int
IM_BANDEFMT_CHAR FMTCHAR 1 Signed 8-bit int
IM_BANDFMT_USHORT FMTUSHORT 2 Unsigned 16-bit int
IM_BANDFMT_SHORT FMTSHORT 3 Signed 16-bit int
IM_BANDFMT_UINT FMTUINT 4 Unsigned 32-bit int
IM_BANDEFMT_INT FMTINT 5 Signed 32-bit int
IM_BANDEFMT_FLOAT FMTEFLOAT 6 32-bit IEEE float
IM_BANDFMT_COMPLEX FMTCOMPLEX 7 Complex (2 floats)
IM_BANDFMT_DOUBLE FMTDOUBLE 8 64-bit IEEE double
IM_BANDFMT_DPCOMPLEX | FMTDPCOMPLEX 9 Complex (2 doubles)
Table 1.2: Possible values for BandFmt
Coding C++ and Python name | Value | Meaning
IM_CODING._NONE | NOCODING 0 VIPS computation format
IM_CODING_LABQ | LABQ 2 LABQ storage format
IM_CODING_RAD RAD 6 Radiance storage format

Table 1.3: Possible values for Coding

1.3. THE VIMAGE CLASS 5
Type C++ and Python name | Value | Meaning
IM_-TYPE MULTIBAND | MULTIBAND 0 Some multiband image
IM_TYPE B.W B_W 1 Some single band image
IM_.TYPE_HISTOGRAM | HISTOGRAM 10 Histogram or LUT
IM_TYPE_FOURIER FOURIER 24 Image in Fourier space
IM_TYPE_XYZ XYZ 12 CIE XYZ colour space
IM_TYPE_LAB LAB 13 CIE L*a*b* colour space
IM_TYPE_CMYK CMYK 15 im_icc_export ()
IM_.TYPE_LABQ LABQ 16 32-bit CIE L*a*b*
IM_.TYPE_RGB RGB 17 Some RGB
IM_TYPE_UCS ucs 18 UCS(1:1) colour space
IM.TYPE_LCH LCH 19 CIE LCh colour space
IM_.TYPE_LABS LABS 21 48-bit CIE L*a*b*
IM_TYPE_sRGB sRGB 22 sRGB colour space
IM_TYPE_YXY YXY 23 CIE Yxy colour space
IM_-TYPE_RGB16 RGB16 25 16-bit RGB
IM_TYPE_GREY16 GREY16 26 16-bit monochrome

Table 1.4: Possible values for Type

"rw" Asthe "r" mode, but the image is mapped into
your address space read-write. This mode is use-
ful for paintbox-style applications which need to
directly modify an image. See §4.2.8 on page 67.

The second form of constructor is shorthand for:

VImage ("VImage:1", "p")

It is used for representing intermediate results of com-
putations.

Two further constructors are handy for wrapping
VImage around existing images.

VImage (void xbuffer,
int width, int height,
TBandFmt format);

VImage (void =*image);

int bands,

The first constructor makes a VImage from an area of
memory (perhaps from another image processing sys-
tem), and the second makes a VImage from an IMAGE.

In both these two cases, the VIPS C++ API does not
assume responsibility for the resources: it’s up to you to
make sure the buffer is freed.

The Python interface adds the usual frombuffer
and fromstring methods.

VImage.fromstring
width, height,
VImage

(string,

bands, format) ->

VImage.frombuffer
width, height,
VImage

(buffer,

bands, format) ->

Use fromstring to avoid worries about object life-
time, but you’ll see a lot of copies and high memory use.
Use frombuffer for speed, but you have to manage
object lifetime yourself.

They are useful for moving images into VIPS from
other image processing libraries. There’s also a utility
function, vips_from_PIL_mode, which turns a PIL
mode into a VIPS band, format, type triple.

->

VImage.vips_from_ PIL_mode (mode)

(bands, format, type)

See also tobuffer and tostring below.

1.3.2 File conversion

VIPS can read and write a number of different file for-
mats. Information about file format conversion is taken
from the filename. For example:

VIimage jim("fred.jpg");

This will decompress the file fred. jpg to a memory

buffer, wrap a VIPS image around the buffer and build
a reference to it called jim.

6 CHAPTER 1. VIPS FROM C++ AND PYTHON

Options are passed to the file format converters em-
bedded in the filename. For example:

int meta_get_int (const char xfield)

double meta_get_double(const char xfield)

const char xmeta_get_string(const char xfield)
void *meta_get_area(const char xfield)

void xmeta_get_blob(const char xfield, size_t =xleng

VImage out ("jen.tif:deflate", "w");

Writing to the descriptor out will cause a TIFF image
to be written to disc with deflate compression.

See the manual page for im_open (3) for details of
all the file formats and conversions available. See the

const char xfield, int wvalue)
const char xfield, double value)
const char xfield, const char =*xvalue

void meta_set
void meta_set
void meta_set

man page for VipsFormat (3) for a lower-level API
which lets you control more of the detail of reading and
writing data and is more suitable for large files.

1.3.3 Projection functions

A set of member functions of VImage provide access
to the fields in the header:

int Xsize();

int Ysize();

int Bands () ;
TBandFmt BandFmt () ;
TCoding Coding() ;
TType Type();

float Xres|();

float Yres();

int Length();
TCompression Compression();
short Level () ;

int Xoffset ();

int Yoffset();

Where TBandFmt, TCoding, TType and
TCompression are enums for the types in the
VIPS file header. See section §1.2.1 on page 1 for an
explanation of all of these fields.

Two functions give access to the filename and history
fields maintained by the VIPS IO system.

char xfilename () ;
char =Hist ();

You can get and set extra metadata fields with
meta_get () andmeta_set (). They read and write
GValue objects, see §2.2.6 on page 18.

(
(
(
vold meta_set (

VCallback free_fn, void xvalue)
void meta_set (const char *field,

const char xfield,

VCallback free_fn, void xvalue, size_t length)

The image () member function provides access to
the IMAGE descriptor underlying the C++ API. See the
§2.1 on page 13 for details.

void ximage () ;

The data () member function returns a pointer to an
array of pixel data for the image.

void xdata () const;

This can be very slow and use huge amounts of RAM.

The Python interface adds tobuffer and
tostring. These operations call data () to
generate the image pixels and then either copy it and
return the copy as a string, or wrap the pixels up as a
Python buffer object.

Use tostring to avoid worries about object life-
time, but you’ll see a lot of copies and high memory
use. Use tobuf fer for speed, but you have to manage
object lifetime yourself.

They are useful for moving images from VIPS into
other image processing libraries. There’s also a util-
ity function, PIL_mode_from_vips, which makes
a PIL mode from a VIPS image.

VImage.PIL_mode_from vips (vips—-image)
mode

See also frombuffer and fromstring above.

void meta_set (const char xfield, GValue =xvalue);
void meta_get (const char xfield, GValuth&alAssigpnnent

GType meta_get_type(const char xfield

A set of convenience functions build on these two to
provide accessors for common types.

) .
VI’mage defines copy and assignment, with reference-

counted, pointer-style semantics. For example, if you
write:

1.3. THE VIMAGE CLASS

"fred.v");

"Jim.v");

VImage fred(
VImage Jjim(
fred = jim;

This will automatically close the file fred. v, and
make the variable fred point to the image jim. v in-
stead. Both jim and fred now point to the same un-
derlying image object.

Internally, a VImage object is just a pointer to a
reference-counting block, which in turn holds a pointer
to the underlying VIPS IMAGE type. You can therefore
efficiently pass VImage objects to functions by value,
and return VImage objects as function results.

1.3.5 Computing with VImages

All VIPS image processing operations are member
functions of the VImage class. For example:

VImage fred(
VImage Jjim/(

"fred.v");
"Jim.v");
VImage result = fred.cos () + Jjim;

Will apply im_costra () to fred.v, making an
image where each pixel is the cosine of the correspond-
ing pixel in fred.v; then add that image to jim.v.
Finally, the result will be held in result.

VIPS is a demand-driven image processing system:
when it computes expressions like this, no actual pix-
els are calculated (although you can use the projection
functions on images — result .BandFmt () for ex-
ample). When you finally write the result to a file (or use
some operation that needs pixel values, such asmin (),
find minimum value), VIPS evaluates all of the opera-
tions you have called to that point in parallel. If you
have more than one CPU in your machine, the load is
spread over the available processors. This means that
there is no limit to the size of the images you can pro-
cess.

§4.2 on page 59 lists all of the VIPS packages. These
general rules apply:

e VIPS operation names become C++ member func-
tion names by dropping the im_ prefix, and if
present, the tra postfix, the const postfix and
the _vec postfix. For example, the VIPS opera-
tion im_extract () becomes extract (), and
im_costra () becomes cos ().

e The VImage object to which you apply the mem-
ber function is the first input image, the member
function returns the first output. If there is no im-
age input, the member is declared static.

For example, im_project (3) returns two im-
ages. You can call it from Python like this:

hout =
vout =

VImage.VImage ()
im.project (hout)

In other words, .project () writes the second
result to the VImage you pass as an argument.

e INTMASK and DOUBLEMASK types become
VMask objects, im_col_display types be-
come VDisplay objects.

e Several C API functions can map to the
same C++ API member. For example,
im_andimage, 1im_andimage_vec and

im_andimageconst all map to the member
andimage. The API relies on overloading to
discriminate between these functions.

This part of the C++ API is generated automatically
from the VIPS function database, so it should all be up-
to-date.

There are a set of arithmetic operators defined for
your convenience. You can generally write any arith-
metic expression and include VImage in there.

VImage fred(
VImage Jjim/(

"fred.v");
"jim.v"),.
/ 2);

Vimage v = int ((fred + jim)

1.3.6 Writing results

Once you have computed some result, you can write it to
a file with the member write (). It takes the following
forms:

VIimage write(const char *name);
VIimage write(VImage out);
VIimage write();

The first form simply writes the image to the named
file. The second form writes the image to the specified
VImage object, for example:

"fred.v");
"Jim buffer",

VImage fred(
VImage Jjim/("t o)

Vimage v = (fred + 42) .write(jim);
This creates a temporary memory buffer called jim,
and fills it with the result of adding 42 to every pixel
in fred.v.

The final form of write () writes the image to a

memory buffer, and returns that.

1.3.7 Type conversions

Two type conversions are defined: you can cast
VImage to a VDMask and to a VIMask.

operator VDMask () ;
operator VIMask();

These operations are slow and need a lot of memory!
Emergencies only.

1.4 The VMask class

The VMask class is an abstraction over the VIPS
DOUBLEMASK and INTMASK types which gives con-
venient and safe representation of matrices.

VMask has two sub-classes, VIMask and VDMask.
These represent matrices of integers and doubles respec-
tively.

1.4.1 Constructors

There are four constructors for VIMask and VDMask:

VIMask (int xsize, int ysize);

VIMask (int xsize, int ysize,
int scale, int offset, ...);

VIMask (int xsize, int ysize,

int scale, int offset,
std: :vector<int> coeff);

VIMask (const char #*name);
VIMask () ;
VDMask (int xsize, int ysize);
VDMask (int xsize, int ysize,

double scale, double offset, ...);
VDMask (int xsize, int ysize,

double scale, double offset,

std: :vector<double> coeff);
VDMask (const char #*name);
VDMask () ;

CHAPTER 1. VIPS FROM C++ AND PYTHON

The first form creates an empty matrix, with the spec-
ified dimensions; the second form initialises a matrix
from a varargs list; the third form sets the matrix from
a vector of coefficients; the fourth from the named file.
The final form makes a mask object with no contents
yet.

The varargs constructors are not wrapped in Python
— use the vector constructor instead. For example:

m = VMask.VIMask (3, 3, 1, O,
(-1, -1, -1,
-1, 8, -1,
-1, -1, -11)

1.4.2 Projection functions

A set of member functions of VIMask provide access
to the fields in the matrix:

int xsize () const;
int ysize () const;
int scale () const;
int offset () const;

const char xfilename () const;

VDMask is the same, except that the scale ()
and of fset () members return double. VMask al-
lows all operations that are common to VIMask and
VDMask.

1.4.3 Assignment

VMask defines copy and assignment with pointer-style
semantics. You can write stuff like:

VIMask fred(
VMask Jjim;

"mask");

jim = fred;

This reads the file ma sk, noting a pointer to the mask
in fred. It then makes jim also point to it, so jim and
fred are sharing the same underlying matrix values.

Internally, a VMask object is just a pointer to a
reference-counting block, which in turn holds a pointer
to the underlying VIPS MASK type. You can therefore
efficiently pass VMask objects to functions by value,
and return VMask objects as function results.

1.5. THE vDISPLAY CLASS

1.4.4 Computing with VMask

You can use [] to get at matrix elements, numbered
left-to-right, top-to-bottom. Alternatively, use () to ad-
dress elements by x, y position. For example:

VIMask fred("mask");
for(int 1 = 0; i < fred.xsize(); 1i++
fred[i] = 12;

will set the first line of the matrix to 12, and:

VDMask fred("mask");
for(int x = 0; x < fred.xsize(); =x++
fred(x, x) = 12.0;

will set the leading diagonal to 12.

These don’t work well in Python, so there’s an ex-
tra member, get (), which will get an element by z,y
position.

x = mat.get (2, 4)

See the member functions below for other operations

on VMask.

1.4.5 VIMask operations

The following operations are defined for VIMask:
// Cast to VDMask and VImage
operator VDMask () ;

operator VImage () ;

// Build gaussian and log masks

1.4.6

The following operations are defined for VDMask:

VDMask operations

// Cast to VIMask and VImage
operator VIMask () ;
operator VImage () ;

// Build gauss and log masks
static VDMask gauss(double, double);
static VDMask log(double, double);

// Rotate
VDMask rotated5();
VDMask rotate90();

// Scale to intmask
VIMask scalei();

// Transpose, invert, join and multiply
VDMask trn();

VDMask inv () ;

VDMask cat (VDMask);

VDMask mul (VDMask);

1.4.7 Output of masks

You can output masks with the usual << operator.

1.5 The VDisplay class

The VDisplay class is an abstraction over the VIPS
im_col_display type which gives convenient and
safe representation of VIPS display profiles.

VIPS display profiles are now mostly obsolete.
You’re better off using the ICC colour manage-
ment VImage member functions ICC_export () and

static VIMask gauss(double, double); ICC_import ()
static VIMask gauss_sep(double, double);
static VIMask log(double, double);

// Rotate
VIMask rotated5();
VIMask rotate90();

// Transpose, invert,
VDMask trn () ;
VDMask inv () ;
VDMask cat (VDMask);
VDMask mul (VDMask);

1.5.1 Constructors
There are two constructors for VDisplay:

VDisplay (const char xname);
VDisplay () ;

join and multiply The first form initialises the display from one of the

standard VIPS display types. For example:

VDisplay fred(
VDisplay Jjim(

"sSRGB") ;
"ultra2-20/2/98");

10

Makes fred a profile for making images in sSRGB
format, and jim a profile representing my workstation
display, as of 20/2/98. The second form of constructor
makes an uninitialised display.

1.5.2 Projection functions

A set of member functions of VDisplay provide read
and write access to the fields in the display.

char #*name () ;
VDisplayType &type();
matrix &mat () ;
float &YCW (
float &xCW (
float &yCW (
float &YCR((
(
(

) ;
)i
)
).
)
)

4

4

float &YCG
float &YCB
int &Vrwr ();

int &Vrwg () ;

int &Vrwb () ;
float &YOR();
float &YO0G();
float &YOB();
float &gammaR () ;
float &gammaG () ;
float &gammaB () ;
float &B();
float &P();

4

Where VDisplayType is defined as:

enum VDisplayType {
BARCO,
DUMB

}i
And matrix is defined as:
typedef float matrix([3][3];

For a description of all the fields in a VIPS display
profile, see the manual page for im_XYZ2RGB ().

1.6 The VError class

The VError class is the class thrown by the VIPS
C++ API when an error is detected. It is derived from
std: :exception in the usual way.

CHAPTER 1. VIPS FROM C++ AND PYTHON

1.6.1 Constructors

There are two constructors for VError:

VError (std::string str);
VError () ;

The first form creates an error object initialised with
the specified string, the last form creates an empty error
object.

1.6.2 Projection functions

A function gives access to the string held by VError:
const char xwhat ();
You can also send to an ost ream.

std::ostream& operator<<(
std::ostream&, const erroré&);

1.6.3 Computing with VError

Two member functions let you append elements to an
error:

VError &app(std::string txt);
VError &app(const int i);

For example:
VError wombat;

int n = 12;

wombat.app ("possum:
app(n).app(" elements\n");
throw (wombat);

will throw a VError with a diagnostic of:
possum: no more than 12 elements

The member function perror () prints the error
message to stdout and exits with a code of 1.

void perror(const char x);
void perror();

1.6.4 Convenience function

The convenience function verror creates an VError
with the specified error string, and throws it. If you pass
" " for the string, verror uses the contents of the VIPS
error buffer instead.

extern void verror(std::string str = ""

no more than ").

)

Chapter 2

VIPS for C programmers

2.1 Introduction

This chapter explains how to call VIPS functions from
C programs. It does not explain how to write new image
processing operations (see §3.1 on page 39), only how
to call the ones that VIPS provides. If you want to call
VIPS functions from C++ programs, you can either use
the interface described here or you can try out the much
nicer C++ interface described in §1.1 on page 1.

See §4.1 on page 59 for an introduction to the image
processing operations available in the library. Figure 2.1
on page 14 tries to show an overview of this structure.

VIPS includes a set of UNIX manual pages. Enter
(for example):

example% man im_extract

to get an explanation of the im_extract () function.
All the command-line VIPS operations will print help
text too. For example:

example$% vips im_extract
usage: vips im_extract input output
left top width height band
where:
input is of type "image"
output is of type "image"
left is of type "integer"
top is of type "integer"
width is of type "integer"
height is of type "integer"
band is of type "integer"
extract area/band, from package
"conversion"
flags: (PIO function)
(coordinate transformer)
(area operation)

11

(result can be cached)
vips: error calling function
im_run_command: too few arguments

2.2 Core C API

VIPS is built on top of several other libraries, two of
which, glib and gobject, are exposed at various points
in the C APL

You can read up on glib at the GTK+ website:

http://www.gtk.org

There’s also an excellent book by Matthias Warkus,
The Official GNOME 2 Developer’s Guide, which cov-
ers the same material in a tutorial manner.

2.2.1 Startup

Before calling any VIPS function, you need to start
VIPS up:
int im_init_world(const char xargv0);

The argv0 argument is the value of argv[0]
your program was passed by the host operating sys-
tem. VIPS uses this with im_guess_prefix () and
im_guess_1libdir () to try to find various VIPS
data files.

If you don’t call this function, VIPS will call it for
you the first time you use a VIPS function. But it won’t
be able to get the argv0 value for you, so it may not be
able to find it’s data files.

VIPS also offers the optional:

GOptionGroup #*im_get_option_group(void);

12

Python binding

C++ binding

YIPS image
processing
operations

CHAPTER 2. VIPS FOR C PROGRAMMERS

Command-line
interface

User image
processing
operations

WIPS 10 system

Figure 2.1: VIPS software architecture

2.2. CORE C API

You can use this with GOption to parse your pro-
gram’s command-line arguments. It adds several useful
VIPS flags, including -—vips-concurrency.

Figure 2.2 on page 16 shows both these functions in
use. Again, the GOption stuff is optional and just lets
VIPS add some flags to your program. You do need the
im_init_world() though.

2.2.2 Image descriptors

The base level of the VIPS I/O system provides IMAGE
descriptors. An image represented by a descriptor may
be an image file on disc, an area of memory that has
been allocated for the image, an output file, a delayed
computation, and so on. Programs need (usually) only
know that they have a descriptor, they do not see many
of the details. Figure 2.3 on page 17 shows the definition
of the IMAGE descriptor.

The first set of fields simply come from the image file
header: see §1.2.1 on page 1 for a full description of
all the fields. The next set are maintained for you by
the VIPS I/O system. filename is the name of the
file that this image came from. If you have attached
an eval callback to this image, t ime points to a set of
timing statistics which can be used by user-interfaces
built on VIPS to provide feedback about the progress of
evaluation — see §2.2.8 on page 21. Finally, if you set
kill to non-zero, VIPS will block any pipelines which
use this descriptor as an intermediate. See §2.2.12 on
page 25.

The remaining fields are private and are used by VIPS
for housekeeping.

2.2.3 Header fields

You can access header fields either directly (as
im->Xsize, for example) or programmatically with
im_header_int () and friends. For example:

int 1i;

im_header_int (im, "Xsize", &i);
There’s also im_header_map () to loop over

header fields, and im_header_get_type to test the

type of fields. These functions work for image meta

fields as well, see §2.2.6 on page 18.

13

2.2.4 Opening and closing

Descriptors are created with im_open (). You can
also read images with the format system: see §2.5 on
page 33. The two APIs are complimentary, though
im_open () is more useful.

At the command-line, try:

$ vips —--1list classes

/noindent to see a list of all the supported file formats.
im_open () takes a file name and a string represent-
ing the mode with which the descriptor is to be opened:

IMAGE xim_open(const char xfilename,
const char *mode)

The possible values for mode are:

"r" The file is opened read-only. If you open a non-
VIPS image, or a VIPS image written on a machine
with a different byte ordering, im_open () will
automatically convert it to native VIPS format. If
the underlying file does not support random access
(JPEG, for example), the entire file will be con-
verted in memory.

VIPS can read images in many file formats. You
can control the details of the conversion with extra
characters embedded in the filename. For example:

fred = im_open (
"r") ;

"fred.tif:2",

will read page 2 of a multi-page TIFF. See the man
pages for details.

An IMAGE descriptor is created which, when
written to, will write pixels to disc in the specified
file. Any existing file of that name is deleted.

VIPS looks at the filename suffix to determine the
save format. If there is no suffix, or the filename
ends in " .v", the image is written in VIPS native
format.

If you want to control the details of the conversion
to the disc format (such as setting the Q factor for a
JPEG, for example), you embed extra control char-
acters in the filename. For example:

fred = im_open (
"W") ;

"fred. jpg:95",

14 CHAPTER 2. VIPS FOR C PROGRAMMERS

#include <stdio.h>
#include <vips/vips.h>

static gboolean print_stuff;

static GOptionEntry options[] = {
{ "print", ’'p’, 0, G_OPTION_ARG_NONE, &print_stuff,
"print \"hello world!\"", NULL },
{ NULL }
bi

int
main(int argc, char xxargv)
{
GOptionContext *context;
GError *xerror = NULL;

if(im_init_world(argv([0]))

error_exit ("unable to start VIPS");
context = g_option_context_new("- my program");
g_option_context_add _main_entries(context,
options, "main");
g_option_context_add_group(context, im_get_option_group());
if('g_option_context_parse(context, &argc, &argv, &error)) |
if(error) {

fprintf (stderr, "%s\n", error->message);
g_error_free(error);

}
error_exit ("try \"%s —--help\"", g_get_prgname());
}

g_option_context_free(context);

if(print_stuff)
printf("hello, world!\n");

return(0);

Figure 2.2: Hello World for VIPS

2.2. CORE C API

typedef struct {
/* Fields from image
*/
int Xsize;
int Ysize;
int Bands;
int Bbits;
int BandFmt;
int Coding;
int Type;
float XRes;
float YRes;
int Length;
short Compression;
short Level;
int Xoffset;
int Yoffset;

/ *
/ *
/ *
/ *
/ *
/ *
/ *
/
/ *
/ *
/ *
/ *
/ *

header.

Pels per line */

Lines =*/

Number of bands x/

Bits per band x/

Band format =/
Coding type */
Type of file */
Horizontal res in pels/mm =*/

Vertical
Obsolete
Obsolete
Obsolete
Position

/+ Derived fields that may be read

*/
char xfilename;
im_time_t #*time;
int kill;

pels/mm */

res in

(unused) =/
(unused) =/
(unused) =*/

of origin «/

by the

/* File name =*/
/* Timing for eval
/* Set to non-zero

and lots of other private fields used

housekeeping.
} IMAGE;

user.

callback =/
to block eval */

by VIPS for

Figure 2.3: The IMAGE descriptor

15

16

writes to fred will write a JPEG with Q 95.
Again, see the man pages for the conversion func-
tions for details.

"t" Asthe "w" mode, but pels written to the descrip-
tor will be saved in a temporary memory buffer.

"p" This creates a special partial image. Partial im-
ages are used to join VIPS operations together, see
§2.2.12 on page 23.

"rw" Asthe "r" mode, but the image is mapped into
the caller’s address space read-write. This mode
is only provided for the use of paintbox-style ap-
plications which need to directly modify an image.
Most programs should use the "w" mode for im-
age output.

If an error occurs opening the image, im_open ()
calls im_error () with a string describing the cause
of the error and returns NULL. im_error () has type

void im_error(const char xdomain,
const char «format, ...)

The first argument is a string giving the name of the
thing that raised the error (just "im_open", for exam-
ple). The format and subsequent arguments work ex-
actly as printf (). It formats the message and ap-
pends the string formed to the error log. You can get a
pointer to the error text with im_error_buffer ().

const char *im_error_buffer ()

Applications may display this string to give users
feedback about the cause of the error. The
VIPS exit function, error_exit (), prints
im_error_buffer () to stderr and terminates
the program with an error code of 1.

void error_exit (

)

const char xformat,

There are other functions for handling errors: see the
man page for im_error ().
Descriptors are closed with im_close ().

type:

It has

int im_close(IMAGE #*im)

im_close () returns 0 on success and non-zero on
error.

CHAPTER 2. VIPS FOR C PROGRAMMERS

2.2.5 Examples

As an example, Figure 2.2.5 on page 19 will print the
width and height of an image stored on disc.
To compile this example, use:

‘pkg-config vips-7.14 \
—-—-cflags —--1libs' myfunc.c

cc

As a slightly more complicated example, Figure 2.2.5
on page 20 will calculate the photographic negative of
an image.

2.2.6 Metadata

VIPS lets you attach arbitrary metadata to an IMAGE.
For example, ICC profiles, EXIF tags, image history,
whatever you like. VIPS will efficiently propagate
metadata as images are processed (usually just by copy-
ing pointers) and will automatically save and load meta-
data from VIPS files (see §1.2.1 on page 1).

A piece of metadata is a value and an identifying
name. A set of convenience functions let you set and
get int, double, string and blob. For example:

int im_meta_set_int (IMAGE =*,
const char xfield, int);
int im _meta_get_int (IMAGE =,
const char xfield, int =*);
So you can do:
if(im_meta_set_int (im, "poop", 42))
return(-1);

to create an int called "poop", then at some later point
(possibly much, much later), in an image distantly de-
rived from im, you can use:

int i;

if(im_meta_get_int (im, "poop", &i))
return(-1);

And get the value 42 back.
You can use im_meta_set () and

im_meta_get () to attach arbitrary GValue to
images. See the man page for im_meta_set () for
full details.

You can test for a field being present with
im_meta_get_type () (youll get G_TYPE_INT
back for "poop", for example, or O if it is not defined
for this image).

2.2. CORE C API

#include <stdio.h>
#include <vips/vips.h>

int
main(int argc, char *xargv)

{
IMAGE *im;

/* Check arguments.

*/
if(im_init_world(argvI[0]))
error_exit ("unable to start VIPS");
if(argc !'= 2)
error_exit ("usage: %$s filename", argv[0]);

/+ Open file.

*/
if(!'(im = im_open(argv([1l], "r")))
error_exit ("unable to open %s for input", argv[l]);

/* Process.

*/
printf("width = %d, height = %d\n", im->Xsize, im->Ysize);
/x Close.
*/
if(im_close(im))
error_exit ("unable to close %s", argvI[l]);

return(0);

Figure 2.4: Print width and height of an image

18

CHAPTER 2. VIPS FOR C PROGRAMMERS

#include <stdio.h>
#include <vips/vips.h>

int
main(int argc, char xxargv)

{

IMAGE =xin, =*out;

/+ Check arguments.

x/
if(im_init_world(argv([0]))
error_exit ("unable to start VIPS");
if(argc !'= 3)
error_exit ("usage: %s infile outfile", argv[0]);

/+ Open images for read and write, invert, update the history with our
* args, and close.
*/
if(!'(in = im_open(argv[1l], "r"))
!'(out = im_open(argv[2], "w")) ||
im_invert (in, out) ||
im_updatehist (out, argc, argv) ||
im_close(in) ||
im_close(out))
error_exit (argv[0]);

return(0);

Figure 2.5: Find photographic negative

2.2. CORE C API

2.2.7 History

VIPS tracks the history of an image, that is, the se-
quence of operations which have led to the creation of
an image. You can view a VIPS image’s history with the
header command, or with nip2’s View Header
menu. Whenever an application performs an action, it
should append a line of shell script to the history which
would perform the same action.

The call to im_updatehist () in Figure 2.2.5 on
page 20 adds a line to the image history noting the in-
vocation of this program, its arguments, and the time
and date at which it was run. You may also find
im_histlin () helpful. It has type:

void im_histlin(IMAGE xim,
const char xfmt, ...)

It formats its arguments as print £ () and appends the
string formed to the image history.

You read an image’s history with
im_history_get (). It returns the entire his-
tory of an image, one action per line. No need to free
the result.

const char =«

im_history_get (IMAGE xim);

2.2.8 Eval callbacks

VIPS lets you attach callbacks to image descriptors.
These are functions you provide which VIPS will call
when certain events occur. See §3.3.6 on page 55 for
more detail.

Eval callbacks are called repeatedly during evaluation
and can be used by user-interface programs to give feed-
back about the progress of evaluation.

2.2.9 Detailed rules for descriptors

These rules are intended to answer awkward questions.
1. You can output to a descriptor only once.
2. You can use a descriptor as an input many times.

3. You can only output to a descriptor that was opened
with modes "w", "t" and "p".

4. You can only use a descriptor as input if it was
opened with modes "r" or "rw".

19

5. If you have output to a descriptor, you may sub-
sequently use it as an input. "w" descriptors are
automatically changed to "r" descriptors.

If the function you are passing the descriptor to
uses WIO (see §2.2.12 on page 25), then "p" de-
scriptors become "t". If the function you are
passing the descriptor to uses PIO, then "p" de-
scriptors are unchanged.

2.2.10 Automatic resource deallocation

VIPS lets you allocate resources local to an image de-
scriptor, that is, when the descriptor is closed, all re-
sources which were allocated local to that descriptor are
automatically released for you.

Local image descriptors

VIPS provides a function which will open a new image
local to an existing image. im_open_local () has

type:

IMAGE xim_open_local(IMAGE xim,
const char x=filename,
const char xmode)

It behaves exactly as im_open (), except that you
do not need to close the descriptor it returns. It will
be closed automatically when its parent descriptor imis
closed.

Figure 2.6 on page 22 is a function which will sum
an array of images. We need never close any of the (un-
known) number of intermediate images which we open.
They will all be closed for us by our caller, when our
caller finally closes out. VIPS lets local images them-
selves have local images and automatically makes sure
that all are closed in the correct order.

It is very important that these intermediate images are
made local to out rather than in, for reasons which
should become apparent in the section on combining op-
erations below.

There’s also im_open_local_array () for
when you need a lot of local descriptors, see the man

page.

Local memory allocation

VIPS includes a set of functions for memory allocation
local to an image descriptor. The base memory alloca-
tion function is im_malloc (). It has type:

20 CHAPTER 2. VIPS FOR C PROGRAMMERS

/+ Add another image to the accumulated total.
x/
static int
suml (IMAGE =+acc, IMAGE #**in, int nin, IMAGE =*out)
{

IMAGE «t;
if(nin ==)
/+ All done ... copy to out.
*/
return(im_copy(acc, out));

/* Make a new intermediate, and add to it..

*/
return(! (t = im_open_local(out, "suml:1", "p")) ||
im_add(acc, in[0], t) ||
suml(t, in + 1, nin - 1, out));
}
/+ Sum the array of images in[]. nin is the number of images in

* in[], out 1is the descriptor we write the final image to.
*/

int

total(IMAGE +*xin, int nin, IMAGE xout)

{

/+ Check that we have at least one image.

*/
if(nin <= 0) {
im_error("total", "nin should be > 0");
return(-1);

/+ More than 1, sum recursively.
*/

return(suml(in[0], in + 1, nin - 1, out));

Figure 2.6: Sum an array of images

2.2. CORE C API

void *im _malloc(IMAGE %, size_t)

It operates exactly as the standard malloc () C li-
brary function, except that the area of memory it al-
locates is local to an image. If im_malloc () is
unable to allocate memory, it returns NULL. If you
pass NULL instead of a valid image descriptor, then
im_malloc () allocates memory globally and you
must free it yourself at some stage.

To free memory explicitly, use im_free ():

int im_free(void *)
im_free () always returns 0, so you can use it as an
argument to a callback.

Three macros make memory allocation even easier.
IM_NEW () allocates a new object. You give it a de-
scriptor and a type, and it returns a pointer to enough
space to hold an object of that type. It has type:

type—name xIM_NEW(IMAGE %, type—name

The second macro, ITM_ARRAY (), is very similar,
but allocates space for an array of objects. Note that,
unlike the usual calloc () C library function, it does
not initialise the array to zero. It has type:

21

VIPS provides two more functions for error message
handling: im_warn () and im_diag (). These are
intended to be used for less serious messages, as their
names suggest. Currently, they simply format and print
their arguments to stderr, optionally suppressed by
the setting of an environment variable. Future releases
of VIPS may allow more sophisticated trapping of these
functions to allow their text to be easily presented to the
user by VIPS applications. See the manual pages.

2.2.12 Joining operations together

VIPS lets you join image processing operations to-
gether so that they behave as a single unit. Fig-
ure 2.7 on page 24 shows the definition of the function
im_Lab2disp () from the VIPS library. This func-
tion converts an image in CIE L*a*b* colour space to
an RGB image for a monitor. The monitor character-
istics (gamma, phosphor type, etc.) are described by
the im_col_display structure, see the man page for
im_col_ XYZ2rgb ().

The special "p" mode (for partial) used to open the
image descriptor used as the intermediate image in this
function ‘glues’ the two operations together. When you
use im_TLab2disp (), the two operations inside it will

type-name *IM_ARRAY(IMAGE *, int, typecXgeste together and no extra storage is necessary for

Finally, IM_NUMBER () returns the number of ele-
ments in an array of defined size. See the man pages for
a series of examples, or see §2.3.1 on page 28.

Other local operations

The above facilities are implemented with the VIPS core
function im_add_close_callback (). You can
use this facility to make your own local resource allo-
cators for other types of object — see the manual page
for more help.

2.2.11 Error handling

All VIPS operations return O on success and non-zero on
error, setting im_error (). As a consequence, when
a VIPS function fails, you do not need to generate an
error message — you can simply propagate the error
back up to your caller. If however you detect some error
yourself (for example, the bad parameter in the example
above), you must call im_error () to let your caller
know what the problem was.

the intermediate image (t1 in this example). This is
important if you want to process images larger than the
amount of RAM you have on your machine.

As an added bonus, if you have more than one CPU
in your computer, the work will be automatically spread
across the processors for you. You can control this par-
allelization with the IM_CONCURRENCY environment
variable, im_concurrency_set (), and with the
—--vips-concurrency command-line switch. See
the man page for im_generate ().

How it works

When a VIPS function is asked to output to a "p" im-
age descriptor, all the fields in the descriptor are set (the
output image size and type are set, for example), but no
image data is actually generated. Instead, the function
attaches callbacks to the image descriptor which VIPS
can use later to generate any piece of the output image
that might be needed.

When a VIPS function is asked to output to a "w"
or a "t" descriptor (a real disc file or a real memory

22

int
im_Lab2disp (
{

IMAGE =*in, IMAGE =*out,

IMAGE *tl;
if(!'(tl = im_open_local (out,
im_ Lab2XYZ(in, tl) ||

im_XYZ2disp(tl, out, disp))
return(-1);

return(O

)i

CHAPTER 2. VIPS FOR C PROGRAMMERS

struct im_col_display =disp)

"im_Lab2disp:1", "p")) ||

Figure 2.7: Two image-processing operations joined together

buffer), it evaluates immediately and its evaluation in
turn forces the evaluation of any earlier "p" images.

In the example in Figure 2.7, whether or not any
pixels are really processed when im_Lab2disp ()
is called depends upon the mode in which out was
opened. If out is also a partial image, then no pixels
will be calculated — instead, a pipeline of VIPS opera-
tions will be constructed behind the scenes and attached
to out.

Conversely, if out is a real image (that is, either
"w" or "t "), then the final VIPS operation in the func-
tion (im_XYZ2disp ()) will output the entire image
to out, causing the earlier parts of im Lab2disp ()
(and indeed possibly some earlier pieces of program, if
in was also a "p" image) to run.

When a VIPS pipeline does finally evaluate, all of the
functions in the pipeline execute together, sucking im-
age data through the system in small pieces. As a con-
sequence, no intermediate images are generated, large
amounts of RAM are not needed, and no slow disc I/O
needs to be performed.

Since VIPS partial I/O is demand-driven rather than
data-driven this works even if some of the operations
perform coordinate transformations. We could, for ex-
ample, include a call to im_affine (), which per-
forms arbitrary rotation and scaling, and everything
would still work correctly.

Pitfalls with partials

To go with all of the benefits that partial image 1/O
brings, there are also some problems. The most serious
is that you are often not quite certain when computation

will happen. This can cause problems if you close an
input file, thinking that it is finished with, when in fact
that file has not been processed yet. Doing this results
in dangling pointers and an almost certain core-dump.

You can prevent this from happening with careful use
of im_open_local (). If you always open local to
your output image, you can be sure that the input will
not be closed before the output has been generated to a
file or memory buffer. You do not need to be so care-
ful with non-image arguments. VIPS functions which
take extra non-image arguments (a matrix, perhaps) are
careful to make their own copy of the object before re-
turning.

Non-image output

Some VIPS functions consume images, but make no im-
age output. im_stats () for example, scans an im-
age calculating various statistical values. When you use
im_stats (), it behaves as a data sink, sucking image
data through any earlier pipeline stages.

Calculating twice

In some circumstances, the same image data can be gen-
erated twice. Figure 2.8 on page 25 is a function which
finds the mean value of an image, and writes a new im-
age in which pixels less than the mean are set to 0 and
images greater than the mean are set to 255.

This seems straightforward — but consider if im-
age in were a "p", and represented the output of a
large pipeline of operations. The call to im_avg ()
would force the evaluation of the entire pipeline, and

2.3. FUNCTION DISPATCH AND PLUG-INS

int
threshold_at_mean (

{

IMAGE +in,

double mean;

if(im_avg(in, &mean) ||
im_moreconst (in, out, mean))
return(-1);

return(0);

IMAGE =xout

23

)

Figure 2.8: Threshold an image at the mean value

throw it all away, keeping only the average value. The
subsequent call to im_moreconst () will cause the
pipeline to be evaluated a second time.

When designing a program, it is sensible to pay atten-
tion to these issues. It might be faster, in some cases, to
output to a file before calling im_avg (), find the av-
erage of the disc file, and then run im_moreconst ()
from that. There’s also im_cache () which can keep
recent parts of a very large image.

Blocking computation

IMAGE descriptors have a flag called ki11 which can
be used to block computation. If im->kill is set to
a non-zero value, then any VIPS pipelines which use
im as an intermediate will fail with an error message.
This is useful for user-interface writers — suppose your
interface is forced to close an image which many other
images are using as a source of data. You can just set
the k111 flag in all of the deleted image’s immediate
children and prevent any dangling pointers from being
followed.

Limitations

Not all VIPS operations are partial-aware. These non-
partial operations use a pre-VIPS 7.0 I/O scheme in
which the whole of the input image has to be present
at the same time. In some cases, this is because partial
I/O simply makes no sense — for example, a Fourier
Transform can produce no output until it has seen all of
the input. im_fwfft () is therefore not a partial op-
eration. In other cases, we have simply not got around
to rewriting the old non-partial operation in the newer

partial style.

You can mix partial and non-partial VIPS operations
freely, without worrying about which type they are. The
only effect will be on the time your pipeline takes to ex-
ecute, and the memory requirements of the intermediate
images. VIPS uses the following rules when you mix
the two styles of operation:

1. When a non-partial operation is asked to output to
a partial image descriptor, the "p" descriptor is
magically transformed into a "t " descriptor.

. When a non-partial operation is asked to read from
a "p" descriptor, the "p" descriptor is turned into
a "t" type, and any earlier stages in the pipeline
forced to evaluate into that memory buffer.

The non-partial operation then processes from the
memory buffer.

These rules have the consequence that you may only
process very large images if you only use partial opera-
tions. If you use any non-partial operations, then parts
of your pipelines will fall back to old whole-image 1/O
and you will need to think carefully about where your
intermediates should be stored.

2.3 Function dispatch and plug-ins

(This chapter is on the verge of being deprecated.
We have started building a replacement based on
GObject, see §2.4 on page 32.)

As image processing libraries increase in size it be-
comes progressively more difficult to build applications
which present the operations the library offers to the

24

user. Every time a new operation is added, every user
interface needs to be adapted — a job which can rapidly
become unmanageable.

To address this problem VIPS includes a simple
database which stores an abstract description of every
image processing operation. User interfaces, rather than
having special code wired into them for each operation,
can simply interrogate the database and present what
they find to the user.

The operation database is extensible. You can define
new operations, and even new types, and add them to
VIPS. These new operations will then automatically ap-
pear in all VIPS user interfaces with no extra program-
ming effort. Plugins can extend the database at runtime:
when VIPS starts, it loads all the plugins in the VIPS
library area.

2.3.1 Simple plugin example

As an example, consider this function:

#include <stdio.h>
#include <vips/vips.h>

/+ The function we define. Call this
* from other parts of your C
* application.
x/
int
double_integer (
{

return (

int in)

in » 2);

The source for all the example code in this section is in
the vips-examples package.

The first step is to make a layer over this function
which will make it look like a standard VIPS function.
VIPS insists on the following pattern:

e The function should be int-valued, and return O
for success and non-zero for error. It should set
im_error ().

e The function should take a single argument:
a pointer to a NULL-terminated array of
im_objects.

CHAPTER 2. VIPS FOR C PROGRAMMERS

e Fach im_object represents one argument to the
function (either output or input) in the form spec-
ified by the corresponding entry in the function’s
argument descriptor.

The argument descriptor is an array of structures,
each describing one argument. For this example, it is:

/+ Describe the type of our function.
*+ One input int, and one output int.
*/

static im_arg_desc arg_types[] = {

IM_INPUT_INT("in"),
IM_OUTPUT_INT("out")
bi

IM_INPUT_INT () and IM_OUTPUT_INT () are
macros defined in <vips/dispatch.h> which
make argument types easy to define. Other macros
available are listed in table 2.1.

The argument to the type macro is the name of the
argument. These names are used by user-interface pro-
grams to provide feedback, and sometimes as variable
names. The order in which you list the arguments is the
order in which user-interfaces will present them to the
user. You should use the following conventions when
selecting names and an order for your arguments:

e Names should be entirely in lower-case and con-
tain no special characters, apart from the digits 0-9
and the underscore character *_’.

e Names should indicate the function of the argu-

ment. For example, im_add () has the following
argument names:

example% vips -help im_add

vips: args: inl in2 out
where:
inl is of type "image"

in2 is of type "image"
out is of type "image"

add two images, from package
"arithmetic"

flags:
(PIO function)
(no coordinate transformation)
(point-to-point operation)

2.3. FUNCTION DISPATCH AND PLUG-INS

Macro

Meaning

im_object has type

IM_INPUT_INT
IM_INPUT_INTVEC
IM_INPUT_IMASK
IM_OUTPUT_INT
IM_INPUT_INTVEC
IM_OUTPUT_IMASK
IM_INPUT_DOUBLE
IM_INPUT_DOUBLEVEC
IM_INPUT_DMASK
IM_OUTPUT_DOUBLE
IM_OUTPUT_DOUBLEVEC
IM_OUTPUT_DMASK
IM_OUTPUT_DMASK_STATS
IM_OUTPUT_COMPLEX
IM_INPUT_STRING
IM_OUTPUT_STRING
IM_INPUT_IMAGE
IM_INPUT_IMAGEVEC
IM_OUTPUT_IMAGE
IM_RW_IMAGE
IM_INPUT DISPLAY
IM_.OUTPUT_DISPLAY
IM_INPUT_GVALUE
IM_.OUTPUT_GVALUE
IM_INPUT_INTERPOLATE

Input int

Input vector of int
Input int array

Output int

Output vector of int
Output int array to file
Input double

Input vector of double
Input double array
Output double

Output vector of double
Output double array to file
Output double array to screen
Output complex

Input string

Output string

Input image

Vector of input images
Output image
Read-write image

Input display

Output display

Input GValue

Output GValue

Input VipsInterpolate

int
im_intvec_object =
immask_object =
int «
im_intvec_object =
immask_object =
double =
im_realvec_object =
immask_object =
double =
im_realvec_object =«
immask_object =

double =

char =«

char =

IMAGE *

IMAGE *x%

IMAGE *

IMAGE *
im_col_display =
im_col display =
GValue =

GValue =
VipsInterpolate =

Table 2.1: Argument type macros

25

26

e You should order arguments with large input ob-
jects first, then output objects, then any extra argu-
ments or options. For example, im_extract ()
has the following sequence of arguments:

example$ vips —help im_extract
vips: args: input output left top
width height channel
where:
input is of type "image"
output is of type "image"
left is of type "integer"
top is of type "integer"
width is of type "integer"
height is of type "integer"
channel is of type "integer"
extract area/band, from package
"conversion"
flags:
(PIO function)
(no coordinate transformation)
(point-to-point operation)

This function sits over double_integer (), pro-
viding VIPS with an interface which it can call:

/* Call our function via a VIPS
*+ im_object vector.
*/
static int
double_vec (
{
int *in =
int xout =

im_object *argv)

(int =)
(int =)

argv[0];
argv[l];
*out = double_integer(xin);
/+ Always succeed.

*/

return(0);

Finally, these two pieces of information (the argu-
ment description and the VIPS-style function wrapper)
can be gathered together into a function description.

/+ Description of double_integer.

*/

static im_function double_desc = {
"double_integer",

CHAPTER 2. VIPS FOR C PROGRAMMERS

"double an integer",
OI
double_vec,
IM_NUMBER (
arg_types

arg_types),

}i

IM_NUMBER () is a macro which returns the number
of elements in a static array. The f1lags field contains
hints which user-interfaces can use for various optimi-
sations. At present, the possible values are:

IM FNPIO This function uses the VIPS PIO system
(see §3.3 on page 42).

IM FN_TRANSFORM This the function transforms co-
ordinates.

IM FN PTOP This is a point-to-point operation, that is,
it can be replaced with a look-up table.

IM FN_NOCACHE This operation has side effects and
should not be cached. Useful for video grabbers,
for example.

This function description now needs to be added to
the VIPS function database. VIPS groups sets of related
functions together in packages. There is only a single
function in this example, so we can just write:

/+ Group up all the functions in this
* file.
*/
static im_function
*function_list[] = {
&double_desc
bi

/+ Define the package_table symbol.
* This is what VIPS looks for when
* loading the plugin.

*/

im_package package_table = {
"example",
IM_NUMBER (function_list),
function_1list

}i

The package has to be named package_table,
and has to be exported from the file (that is, not a static).
VIPS looks for a symbol of this name when it opens
your object file.

2.3. FUNCTION DISPATCH AND PLUG-INS

This file needs to be made into a dynamically load-
able object. On my machine, I can do this with:

example% gcc —-fPIC -DPIC -c
‘pkg-config vips-7.12 --cflags’®
plug.c -o plug.o

example% gcc -shared plug.o
-0 double.plg

You can now use double . plg with any of the VIPS
applications which support function dispatch. For ex-
ample:

example% vips -plugin double.plg \
double_integer 12

24

example$%

When VIPS starts up, it looks for a directory in
the library directory called vips—, with the vips ma-
jor and minor versions numbers as extensions, and
loads all files in there with the suffix .plg. So
for example, on my machine, the plugin directory is
/usr/lib/vips-7.16 and any plugins in that di-
rectory are automatically loaded into any VIPS pro-
grams on startup.

2.3.2 A more complicated example

This section lists the source for im_extract ()’s
function description. Almost all functions in the VIPS
library have descriptors — if you are not sure how to
write a description, it’s usually easiest to copy one from
a similar function in the library.

/* Args to im_extract.

*/

static im_arg_desc
extract_args[] = {
IM_INPUT_IMAGE ("input"),
IM_OUTPUT_IMAGE ("output"),
IM_INPUT_INT("left"),
IM_INPUT_INT("top"),
IM_INPUT_INT("width"),
IM_INPUT_INT("height"),
IM_INPUT_INT("channel")

}i

/+ Call im_extract via arg vector.

*/

27

static int
extract_vec (
{

IMAGE_BOX box;

im_object xargv)

box.xstart = x((int) argv([2]);
box.ystart = x((int *) argv[3]);
box.xsize = *x((int *) argv([4]);
box.ysize = x((int *) argv([5]);
box.chsel = *x((int *) argv([6]);
return(im_extract (

argv[0], argv[l], &box));

/+ Description of im_extract.

*/
static im_function
extract_desc = {

"im_extract",
"extract area/band",

IM_FN_PIO | IM_FN_TRANSFORM,
extract_vec,
NUMBER (extract_args),

extract_args
}i

2.3.3 Adding new types

The VIPS type mechanism is extensible. User plug-ins

can add new types and user-interfaces can (to a certain

extent) provide interfaces to these user-defined types.
Here is the definition of im_arg_desc:

/+ Describe a VIPS command argument.
*/

typedef struct {
char xname;
im_type_desc xdesc;
im_print_obj_fn print;

} im_arg_desc;

The name field is the argument name above. The
desc field points to a structure defining the argument
type, and the print field is an (optionally NULL)
pointer to a function which VIPS will call for output ar-
guments after your function successfully completes and
before the object is destroyed. It can be used to print
results to the terminal, or to copy results into a user-
interface layer.

28

Success on an argument. This is
* called if the image processing
* function succeeds and should be
+ used to (for example) print
* output.
x/

typedef int

(im_object obj

(*im_print_obj_£fn)
)

im_type_desc is defined as:

/* Describe a VIPS type.
x/

typedef struct {
im_arg_type type;
int size;
im_type_flags flags;
im_init_obj_fn init;
im_dest_obj_fn dest;

} im_type_desc;

Where im_arg_type is defined as

names. You may define your
but if you use one of these,
you should use the built-in
type converters.

/x Type
* own,
* then
* VIPS
*/

#define

fdefine

#define

#define

#define

#define

#define

fdefine

#define

#define

#define

#define

typedef

IM_TYPE_IMAGEVEC "imagevec"
IM _TYPE_DOUBLEVEC "doublevec"
IM_TYPE_INTVEC "intvec"
IM_TYPE_DOUBLE "double"
IM_TYPE_INT "integer"
IM_TYPE_COMPLEX "complex"
IM_TYPE_STRING "string"
IM_TYPE_IMASK "intmask"
IM_TYPE_DMASK "doublemask"
IM_TYPE_IMAGE "image"
IM_TYPE_DISPLAY "display"
IM_TYPE_GVALUE
char *im_arg_ type;

"gvalue"

In other words, it’s just a string. When you add a
new type, you just need to choose a new unique string
to name it. Be aware that the string is printed to the user
by various parts of VIPS, and so needs to be “human-
readable”. The flags are:

/+ These bits are ored together to
* make the flags in a type
+ descriptor.

CHAPTER 2. VIPS FOR C PROGRAMMERS

IM_TYPE_OUTPUT: set to indicate
output, otherwise input.

IM_TYPE_ARG: Two ways of making
an im_object --- with and without
a command-line string to help you
along. Arguments with a string
are thing like IMAGE descriptors,
which require a filename to
initialise. Arguments without are
things like output numbers, where
making the object simply involves
allocating storage.

X% ok ok o o X X X X X % % %

typedef enum {
IM_TYPE_OUTPUT =
IM_TYPE_ARG = 0x2
} im_type_flags;

0x1,

And the init and destroy functions are:

/+ Initialise and destroy objects.
* The "str" argument to the init
+ function will not be supplied
+ 1f this is not an ARG type.
*/

typedef int (xim_init_obj_fn)

(im_object =xobj, char =xstr
typedef int (xim_dest_obj_fn)
(im_object obj);

)i

As an example, here is the definition for a new type
of unsigned integers. First, we need to define the init
and print functions. These transform objects of the
type to and from string representation.

/+ Init function for unsigned int
* input.
*/

static int

uint_init (im_object *obij,

{

char =*str

unsigned int *i = (int x) =*obj;
if(sscanf(str, "%d", i) !=1 ||
*1 < 0) |

im_error("uint_init",
"bad format");

)

2.3. FUNCTION DISPATCH AND PLUG-INS

return(-1);

return(0);

/+ Print function for unsigned int
* output.
*/

static int

uint_print (

{

unsigned int *i =
(unsigned int =)

im_object obj)

obj;

printf ("%d\n", (int) =i);

return(0);

Now we can define the type itself. We make two of
these — one for unsigned int used as input, and one for
output.

/* Name our type.
*/
#define TYPE_UINT "uint"

/+ Input unsigned int type.

*/
static im_type_desc input_uint = {
TYPE_UINT, /* Its an int =*/

sizeof (unsigned int), /* Memory =*/
IM_TYPE_ARG, /+ Needs arg =/
uint_init, /* Init =/
NULL /* Destroy =*/

}i

/+ Output unsigned int type.

x/
static im_type_desc output_uint = {
TYPE_UINT, /* It’'s an int =/

), /* Memory =*/
It’s output =*/
Init «/
Destroy */

sizeof (unsigned int

IM_TYPE_OUTPUT, /*

NULL, / *

NULL / *
}i

Finally, we can define two macros to make structures
of type im_arg_desc for us.

29

#define INPUT_UINT(S) \

{ S, &input_uint, NULL }
#define OUTPUT_UINT(S) \

{ S, &output_uint, uint_print }

For more examples, see the definitions for the built-in
VIPS types.

2.3.4 Using function dispatch in your ap-
plication

VIPS provides a set of functions for adding new im-
age processing functions to the VIPS function database,
finding functions by name, and calling functions. See
the manual pages for full details.

Adding and removing functions

im_package xim_load_plugin (
const char xname);

This function opens the named file, searches it for a
symbol named package_table, and adds any func-
tions it finds to the VIPS function database. When you
search for a function, any plug-ins are searched first, so
you can override standard VIPS function with your own
code.

The function returns a pointer to the package it added,
or NULL on error.

int im_close_plugins(void)

This function closes all plug-ins, removing then from
the VIPS function database. It returns non-zero on error.

Searching the function database

void xim_map_packages (
im_list_map_fn fn, void xa)

This function applies the argument function fn to
every package in the database, starting with the most
recently added package. As with im_list_map (),
the argument function should return NULL to continue
searching, or non-NULL to terminate the search early.
im_map_packages () returns NULL if £n returned
NULL for all arguments. The extra argument a is car-
ried around by VIPS for your use.

For example, this fragment of code prints the names
of all loaded packages to £d:

30

static void =

print_package_name (im_package =*pack,

FILE *«fp)
{
(void) fprintf(fp,
"package: \"%s\"\n",

pack->name) ;
/* Continue search.
*/

return (NULL

)i

static void
print_packages(FILE xfp)
{
(void) im_map_packages (
(im_list_map_£fn)

print_package_name, fp);

VIPS defines three convenience functions based on
im_map_packages () which simplify searching for
specific functions:

im_function =
im_find_function (

im_package x*
im_find_package(char *name)

im_package =*
im_package_of_function(

char #*name)

char +*name)

Building argument structures and running com-
mands

im_function =«fn,
im_object xvargv)

int im_allocate_vargv(
im_function =*fn,
im_object *vargv)

int im_free_vargv (

These two functions allocate space for and free VIPS
argument lists. The allocate function simply calls
im_malloc () to allocate any store that the types re-
quire (and also initializes it to zero). The free function
just calls im_free () for any storage that was allo-
cated.

Note that neither of these functions calls the init,
dest or print functions for the types — that’s up to
you.

CHAPTER 2. VIPS FOR C PROGRAMMERS

int im_run_command(char =*name,

int argc, char xxargv)
This function does everything. In effect,

im_run_command("im_invert", 2,
{ "fred.v", "fred2.v", NULL })

is exactly equivalent to

system("vips im_invert fred.v "

"fred2.v")

but no process is forked.

24 The VIPS
VipsObiject

base class:

VIPS is in the process of moving to an object system
based on GObject. You can read about the GOb jec
library at the GTK+ website:

http://www.gtk.org

We’ve implemented two new subsystems
(VipsFormat and VipsInterpolate) on top
of VipsObject but not yet moved the core VIPS
types over. As a result, VipsObject is still develop-
ing and is likely to change in the next release.

This section quickly summarises enough of the
VipsObject system to let you use the two derived
APIs but that’s all. Full documentation will come when
this system stabilises.

2.4.1 Properties

Like the rest of VIPS, VipsObject is a functional
type. You can set properties during object construction,
but not after that point. You may read properties at any
time after construction, but not before.

To enforce these rules, VIPS extends the standard
GOb ject property system and adds a new phase to ob-
ject creation. An object has the following stages in its
life:

Lookup

vips_type_find () is a convenience function that
looks up a type by its nickname relative to a base class.
For example:

2.5. IMAGE FORMATS

GType type =
vips_type_find("VipsInterpolate",
finds a subclass of VipsInterpolate nicknamed
‘bilinear’. You can look up types by their full
name of course, but these can be rather unwieldy
(VipsInterpolateBilinear in this case, for ex-

ample).

Create

Build an instance with g_object_new (). For exam-
ple:

VipsObject *object =
g_object_new(type,
"sharpness", 12.0,
NULL) ;

You can set any of the object’s properties in the con-
structor. You can continue to set, but not read, any other
properties, for example:

g_object_set (
"sharpness",
NULL) ;

object,
12.0,

You can loop over an object’s required and optional
parameters with vips_argument_map ().

Build

Once all of the required any any of the op-
tional object parameters have been set, call
vips_object_build():

31

2.4.2 Convenience functions

"bili

ear");. . o o .
Two ?unctlons) simplify building and printing objects.
vips_object_new_from_string() makes a
new object which is a subclass of a named base class.

VipsObject =
vips_object_new_from_string(
const char xbasename, const char *p

This is the function used by
IM_INPUT_INTERPOLATE (), for example, to
parse command-line arguments. The syntax is:
nickname [(required-argl,
required-argn,
optional-arg-name = value,

optional-argm-name = value)]

So values for all the required arguments, in the correct
order, then name = value for all the optional arguments
you want to set. Parameters may be enclosed in round
or curly braces.

vips_object_to_string () is the exact oppo-
site: it generates the construct string for any constructed
VipsObject.

vips_object_new () wraps up the business of
creating and checking an object. It makes the object,
uses the supplied function to attach any arguments, then
builds the object and returns NULL on failure or the new
object on success.

A switch to the vips command-line program is
handy for listing subtypes of VipsObject. Try:

$ vips —--list classes

int vips_object_build(VipsObject *object);

This function checks that all the parameters have been
set correctly and starts the object working. It returns
non-zero on error, setting im_error_string().

Use

The object is now fully working. You can read results
from it, or pass it on other objects. When you’re finished
with it, drop your reference to end its life.

g_object_unref (object);

2.5 Image formats

VIPS has a simple system for adding support for new
image file formats. You can ask VIPS to find a for-
mat to load a file with or to select a image file writer
based on a filename. Convenience functions copy a file
to an IMAGE, or an IMAGE to a file. New formats may
be added to VIPS by simply defining a new subclass of
VipsFormat.

This is a parallel API to im_open (), see §2.2.4 on
page 15. The format system is useful for images which
are large or slow to open, because you pass a descriptor

)

32

to write to and so control how and where the decom-
pressed image is held. im_open () is useful for im-
ages in formats which can be directly read from disc,
since you will avoid a copy operation and can directly
control the disc file. The inplace operations (see §4.2.8
on page 67), for example, will only work directly on
disc images if you use im_open ().

2.5.1 How a format is represented

See the man page for VipsFormat for full details, but
briefly, an image format consists of the following items:

e A name, a name that can be shows to the user, and
a list of possible filename suffixes (.t1if, for ex-
ample)

e A function which tests for a file being in that for-
mat, a function which loads just the header of the
file (that is, it reads properties like width and height
and does not read any pixel data) and a function
which loads the pixel data

e A function which will write an IMAGE to a file in
the format

e And finally a function which examines a file in
the format and returns flags indicating how VIPS
should deal with the file. The only flag in the cur-
rent version is one indicating that the file can be
opened lazily

2.5.2 The format class

The interface to the format system is defined by the ab-
stract base class VipsFormat. Formats subclass this
and implement some or all of the methods. Any of the
functions may be left NULL and VIPS will try to make
do with what you do supply. Of course a format with all
functions as NULL will not be very useful.

As an example, Figure 2.9 on page 35 shows how to
register a new format in a plugin.

2.5.3 Finding a format

You can loop over the subclasses of VipsFormat in
order of priority with vips_format_map (). Like
all the map functions in VIPS, this take a function and
applies it to every element in the table until the function
returns non-zero or until the table ends.

CHAPTER 2. VIPS FOR C PROGRAMMERS

You find an VipsFormatClass to use to open a
file with vips_format_for_file (). This finds
the first format whose is_a () function returns true or
whose suffix list matches the suffix of the filename, set-
ting an error message and returning NULL if no format
is found.

You find a format to write a file with
vips_format_for_name (). This returns the
first format with a save function whose suffix list
matches the suffix of the supplied filename.

2.5.4 Convenience functions

A pair of convenience functions,
vips_format_write () and
vips_format_read(), will copy an image to
and from disc using the appropriate format.

2.6 Interpolators

VIPS has a general system for representing pixel in-
terpolators. You can select an interpolator to pass to
other VIPS operations, such as im_affinei (), you
can add new interpolators, and you can write operations
which take a general interpolator as a parameter.

An interpolator is a function of the form:

typedef void

PEL *out, REGION #*in, double x,

given the set of input pixels in, it has to calculate a
value for the fractional position (x,y) and write this
value to the memory pointed to by out.

VIPS uses corner convention, so the value of pixel
(0,0) is the value of the surface the interpolator fits at
the fractional position (0.0, 0.0).

2.6.1 How an interpolator is represented

See the man page for VipsInterpolate for full
details, but briefly, an interpolator is a subclass
of VipsInterpolate implementing the following
items:

e An interpolation method, with the type signature
above.

e A function get_window_size () which re-
turns the size of the area of pixels that the inter-
polator needs in order to calculate a value. For ex-
ample, a bilinear interpolator needs the four pixels

(xVipsInterpolateMethod) (VipsInterpola
double y

2.6. INTERPOLATORS

n

static const char »my_suffs[] = { .me", NULL };
static int

is_myformat (const char xfilename)

{

unsigned char buf([2];

if(im__get_bytes(filename, buf, 2) &&
(int) buf[0] == O0xff &&
(int) buf[l] == 0xd8)
return(1);

return(0);

// This format adds no new members.
typedef VipsFormat VipsFormatMyformat;
typedef VipsFormatClass VipsFormatMyformatClass;

static void
vips_format_myformat_class_init (VipsFormatMyformatClass =xclass

{

VipsObjectClass *object_class = (VipsObjectClass x) class;
VipsFormatClass *format_class = (VipsFormatClass x) class;
object_class->nickname = "myformat";
object_class—->description = _("My format");
format_class->is_a = is_myformat;

format_class—>header = my_header;

format_class—->1load =
format_class—->save =

my_read;
my_write;

format_class—->get_flags = my_get_flags;
format_class->priority = 100;

format_class—->suffs

static void

my_suffs;

vips_format_myformat_init (VipsFormatMyformat =*object)

{
}

G_DEFINE_TYPE (VipsFormatMyformat,

char x*

g_module_check_init (GModule #*self)

{
// register the type

vips_format_myformat_get_type();

Figure 2.9: Registering a format in a plugin

vips_format_myformat,

VIPS_TYPE_FORMAT

33

)i

34

surrounding the point to be calculated, or a 2 by 2
window, so window size should be 2.

e Or if the window size is constant, you can leave
get_window_size () NULL and just set the
int value window_size.

2.6.2 A sample interpolator

As an example, Figure 2.10 on page 36 shows how to
register a new interpolator in a plugin.

2.6.3 Writing a VIPS operation that takes
an interpolator as an argument

Operations just take a VipsInterpolate as an ar-
gument, for example:

int im_affinei_all(IMAGE #*in,
VipsInterpolate xinterpolate,

CHAPTER 2. VIPS FOR C PROGRAMMERS

Don’t free the result.
Finally, vips_interpolate_new ()
VipsInterpolate from a nickname:

makes a

VipsInterpolate *vips_interpolate_new(const char #n
For example:
VipsInterpolate *interpolate =

vips_interpolate_new (

You must drop your ref after you’re done with the object
with g_object_unref ().

IMAGE =xout,

double a, double b, double ¢, double d,
double dx, double dy);
To use the interpolator, use

vips_interpolate():

void vips_interpolate(VipsInterpolate xinterpolate,

PEL *out, REGION #*in, double x,

This looks up the interpolate method for the object and
calls it for you.

You can save the cost of the lookup in an inner loop
with vips_interpolate_get_method():

VipsInterpolateMethod
vips_interpolate_get_method (
VipsInterpolate xinterpolate);

2.6.4 Passing an interpolator to a VIPS
operation

You can build an instance of a VipsInterpolator
with the vips_object_x* () family of functions, see
§2.4 on page 32.

Convenience functions return a static instance of one
of the standard interpolators:

double vy);

VipsInterpolate *vips_interpolate_nearest_static(void);
VipsInterpolate xvips_interpolate_bilinear_static(void);
VipsInterpolate *vips_interpolate_bicubic_static(void);

2.6. INTERPOLATORS

// This interpolator adds no new members.
typedef VipsInterpolate Myinterpolator;
typedef VipsInterpolateClass MyinterpolatorClass;

G_DEFINE_TYPE (Myinterpolator, myinterpolator, VIPS_TYPE_INTERPOLATE

static void
myinterpolator_interpolate(VipsInterpolate xinterpolate,
PEL *out, REGION xin, double x, double vy)
{
MyinterpolatorClass xclass =
MYINTERPOLATOR_GET_CLASS (interpolate);

/* Nearest-neighbor.

*/
memcpy (out,
IM_REGION_ADDR(in, floor(x), floor(vy)),
IM_IMAGE_SIZEOF_PEL(in->im));

static void

myinterpolator_class_init (MyinterpolatorClass =*class)

{
VipsObjectClass *object_class = (VipsObjectClass x) class;
VipsInterpolateClass xinterpolate_class = (VipsInterpolateClass x)

object_class—>nickname = "myinterpolator";
object_class->description = _("My interpolator");

interpolate_class->interpolate = myinterpolator_interpolate;

static void

myinterpolate_init (Myinterpolate *object)
{

}

char =*
g_module_check_init (GModule x*self)
{
// register the type
myinterpolator_get_type();

Figure 2.10: Registering an interpolator in a plugin

35

)i

class;

36

CHAPTER 2. VIPS FOR C PROGRAMMERS

Chapter 3

Writing VIPS operations

3.1 Introduction

This chapter explains how to write image processing op-
erations using the VIPS image I/O (input-output) sys-
tem. For background, you should probably take a look
at §2.1 on page 13. This is supposed to be a tutorial,
if you need detailed information on any particular func-
tion, use the on-line UNIX manual pages.

3.1.1 Why use VIPS?

If you use the VIPS image I/O system, you get a number
of benefits:

Threading If your computer has more than one CPU,
the VIPS I/O system will automatically split your
image processing operation into separate threads
(provided you use PIO, see below). You should get
an approximately linear speed-up as you add more
CPUs.

Pipelining Provided you use PIO (again, see below),
VIPS can automatically join operations together. A
sequence of image processing operations will all
execute together, with image data flowing through
the processing pipeline in small pieces. This makes
it possible to perform complex processing on very
large images with no need to worry about storage
management.

Composition Because VIPS can efficiently compose
image processing operations, you can implement
your new operation in small, reusable, easy-to-
understand pieces. VIPS already has a lot of these:
many new operations can be implemented by sim-
ply composing existing operations.

37

Large files Provided you use PIO and as long as the
underlying OS supports large files (that is, files
larger than 2GB), VIPS operations can work on
files larger than can be addressed with 32 bits on a
plain 32-bit machine. VIPS operations only see 32
bit addresses; the VIPS I/O system transparently
maps these to 64 bit operations for I/O. Large file
support is included on most machines after about
1998.

Abstraction VIPS operations see only arrays of num-
bers in native format. Details of representation
(big/little endian, VIPS/TIFF/JPEG file format,
etc.) are hidden from you.

Interfaces Once you have your image processing oper-
ation implemented, it automatically appears in all
of the VIPS interfaces. VIPS comes with a GUI
(nip2), a UNIX command-line interface (vips)
and a C++ and Python APL

Portability VIPS operations can be compiled on most
unixes, Mac OS X and Windows NT, 2000 and XP
without modification. Mostly.

3.1.2 T1/O styles

The I/O system supports three styles of input-output.

Whole-image I/O (WIO) This style is a largely a left-
over from VIPS 6.x. WIO image-processing op-
erations have all of the input image given to them
in a large memory array. They can read any of the
input pels at will with simple pointer arithmetic.

Partial-image I/O (PIO) In this style operations only
have a small part of the input image available to
them at any time. When PIO operations are joined

38

together into a pipeline, images flow through them
in small pieces, with all the operations in a pipeline
executing at the same time.

In-place The third style allows pels to be read and
written anywhere in the image at any time, and
is used by the VIPS in-place operations, such as
im_fastline (). You should only use it for op-
erations which would just be impossibly inefficient
to write with either of the other two styles.

WIO operations are easy to program, but slow and
inflexible when images become large. PIO operations
are harder to program, but scale well as images become
larger, and are automatically parallelized by the VIPS
1/O system.

If you can face it, and if your algorithm can be ex-
pressed in this way, you should write your operations
using PIO. Whichever you choose, applications which
call your operation will see no difference, except in ex-
ecution speed.

If your image processing operation performs no co-
ordinate transformations, that is, if your output image
is the same size as your input image or images, and if
each output pixel depends only upon the pixel at the cor-
responding position in the input images, then you can
use the im_wrapone () and im_wrapmany () oper-
ations. These take a simple buffer-processing operation
supplied by you and wrap it up as a full-blown PIO op-
eration. See §3.3.1 on page 46.

3.2 Programming WIO operations

WIO is the style for you if you want ease of program-
ming, or if your algorithm must have the whole of the
input image available at the same time. For example,
a Fourier transform operation is unable to produce any
output until it has seen the whole of the input image.

3.2.1 Input from an image

In WIO input, the whole of the image data is made avail-
able to the program via the data field of the descriptor.
To make an image ready for reading in this style, pro-

grams should call im_incheck ():
int im_incheck (IMAGE *im)

If it succeeds, it returns 0, if it fails, it returns non-zero
and sets im_error (). On success, VIPS guarantees

CHAPTER 3. WRITING VIPS OPERATIONS

that all of the user-accessible fields in the descriptor
contain valid data, and that all of the image data may
be read by simply reading from the data field (see be-
low for an example). This will only work for images
less than about 2GB in size.

VIPS has some simple macros to help address calcu-
lations on images:

int
int

IM_IMAGE_SIZEOF_ELEMENT (IMAGE x)
IM _IMAGE_SIZEOF_PEL(IMAGE x)
int IM_IMAGE_SIZEOF_LINE (IMAGE =*)
int IM_IMAGE_N_ELEMENTS (IMAGE =)
char *=IM_IMAGE_ADDR(IMAGE =x*,

int x, int vy)

a band el-
line of pels.

These macros calculate sizeof ()
ement, a pel and a horizontal
IM_IMAGE_N_ELEMENTS returns the number of
band elements across an image. IM_IMAGE_ADDR
calculates the address of a pixel in an image. If DEBUG
is defined, it does bounds checking too.

Figure 3.1 on page 41 is a simple WIO operation
which calculates the average of an unsigned char im-
age. It will work for any size image, with any number
of bands. See §3.2.3 on page 42 for techniques for mak-
ing operations which will work for any image type. This
operation might be called from an application with:

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>

void
find_average (
{
IMAGE *im;
double avg;

char *name)

if(!'(im = im_open(name, "
average (im, &avg) ||
im_close(im))

error_exit ("failure!");

")) 1

printf (
name,

"Average of \"%s\" is %G\n",
avg);

}

When you write an image processing operation, you can
test it by writing a VIPS function descriptor and calling

3.2. PROGRAMMING WIO OPERATIONS

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>

int
average (IMAGE *im, double xout)
{

int x, vy;

long total;

/+ Prepare for reading.
*/

if(im_incheck (im))
return(-1);

/+ Check that this is the kind of image we can process.
*/
if(im->BandFmt != IM_BANDFMT_UCHAR | |
im->Coding != IM_CODING_NONE) {
im_error("average", "uncoded uchar images only");
return(-1);

/* Loop over the image, summing pixels.

*/
total = 0;
for(y = 0; yv < im->Ysize; y++) {
unsigned char *p = (unsigned char %) IM_IMAGE_ADDR(im, 0, y);

for(x = 0; x < IM_IMAGE_N_ELEMENTS(im); x++)
total += p[x];

/* Calculate average.

*/

xout = (double) total /
(IM_IMAGE_N_ELEMENTS (im) x im—->Ysize));

/x Success!

*/

return(0);

Figure 3.1: Find average of image

40

it from the vips universal main program, or from the
nip2 interface. See §2.1 on page 13.

3.2.2 Output to an image

Before attempting WIO output, programs should call
im_outcheck (). It has type:

int im_outcheck (IMAGE *im)

If im_outcheck () succeeds, VIPS guarantees that
WIO output is sensible.

Programs should then set fields in the output descrip-
tor to describe the sort of image they wish to write (size,
type, and so on) and call im_setupout (). It has

type:

int im_setupout (IMAGE xim)

im_setupout () creates the output file or memory
buffer, using the size and type fields that were filled in
by the program between the calls to im_outcheck ()
and im_setupout (), and gets it ready for writing.

Pels are written with im_writeline (). This takes
a y position (pel (0,0) is in the top-left-hand corner of
the image), a descriptor and a pointer to a line of pels.
It has type:

int im_writeline (
IMAGE +*im,

int vy,
unsigned char x*pels)

Two convenience functions are available to make this
process slightly easier. im_iocheck () is useful for
programs which take one input image and produce one
image output. It simply calls im_incheck () and
im_outcheck (). It has type:

int im_iocheck(IMAGE xin, IMAGE =xout

The second convenience function copies the fields de-
scribing size, type, metadata and history from one image
descriptor to another. It is useful when the output image
will be similar in size and type to the input image. It has

type:

int im_cp_desc(IMAGE xout, IMAGE «in

There’s also im_cp_descv (), see the man page.

Figure 3.2 on page 43 is a WIO VIPS operation which
finds the photographic negative of an unsigned char im-
age. See §2.2.10 on page 21 for an explanation of
IM_ARRAY. This operation might be called from an ap-
plication with:

CHAPTER 3. WRITING VIPS OPERATIONS

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>
void

find_negative (

{

char xinn, char =*outn)

IMAGE =*in, =*out;

if(!'(in = im_open(inn, "xr")) ||
! (out = im_open(outn, "w")) ||
invert (in, out) ||
im_updatehist (out, "invert") ||
im_close(in) ||
im_close(out))
error_exit("failure!");

See §2.2.7 on page 21 for an explanation of the call
to im_updatehist ().

3.2.3 Polymorphism

Most image processing operations in the VIPS
library can operate on images of any type
(IM_BANDFMT_UCHAR, as in our examples above,
also IM_BANDFMT_UINT etc.). This is usually imple-
mented with code replication: the operation contains
loops for processing every kind of image, and when
called, invokes the appropriate loop for the image it is
given.

As an example, figure 3.3 calculates exp () for every
)pel in an image. If the input image is double, we write
double output. If it is any other non-complex type, we
write float. If it is complex, we flag an error (exp ()
of a complex number is fiddly). The example uses an
image type predicate, im_iscomplex (). There are
a number of these predicate functions, see the manual

page.

3.3 Programming PIO functions

The VIPS PIO system has a number of advantages over
WIO, as summarised in the introduction. On the other
hand, they are a bit more complicated.

3.3. PROGRAMMING PIO FUNCTIONS

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>
#include <vips/util.h>

int
invert (IMAGE *in, IMAGE =xout)

{

int x, y;
unsigned char x*buffer;

/* Check images.

*/

if(im_iocheck(in, out))
return(-1);

if(in—->BandFmt != IM_BANDFMT_UCHAR || in->Coding != IM_CODING_NONE
im_error("invert", "uncoded uchar images only");
return(-1);

/+ Make output image.

*/

if(im_cp_desc(out, in))
return(-1);

if(im_setupout (out))
return(-1);

/+ Allocate a line buffer and make sure it will be freed correctly.
*/

if(!(buffer = IM_ARRAY(out,
IM_IMAGE_SIZEOF_LINE(in), unsigned char)))
return(-1);

/* Loop over the image!

*/
for(y = 0; v < in->Ysize; y++) {
unsigned char *p = (unsigned char x) IM_IMAGE_ADDR(in, 0, vy);

for(x = 0; x < IM_IMAGE_N_ELEMENTS(in); =x++)

buffer([x] = 255 - p[x];
if(im _writeline(y, out, buffer))
return(-1);

return(0);

Figure 3.2: Invert an image

)

{

42

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <vips/vips.h>
#include <vips/util.h>

/+ Exponential transform.
*/
int
exptra(IMAGE xin, IMAGE =*out)
{
int x, vy;
unsigned char xbuffer;

/+ Check descriptors.

CHAPTER 3. WRITING VIPS OPERATIONS

x/

if(im_iocheck(in, out))
return(-1);

if(in->Coding != IM_CODING_NONE im_iscomplex(in)) |
im_error("exptra", "uncoded non-complex only");
return(-1);

}

/* Make output image.

*/

if(im_cp_desc(out, in))
return(-1);

if (in->BandFmt != IM_BANDFMT_DOUBLE

out—->BandFmt = IM_BANDEFMT_FLOAT;

if(im_setupout (out))
return(-1);

Figure 3.3: Calculate exp () for an image

3.3. PROGRAMMING PIO FUNCTIONS 43

/+* Allocate a line buffer.

*/

if(!(buffer = IM_ARRAY(out, IM_IMAGE_SIZEOF_LINE(in), unsigned char))
return(-1);

/+ Our inner loop, parameterised for both the input and output
* types. Note the use of ‘\’, since macros have to be all on
* one line.

*/
#define loop (IN, OUT) { \
for(y = 0; y < in->Ysize; y++) { \
IN *p = (IN %) IM_IMAGE_ADDR(in, 0, y); \
OUT xg = (OUT «) buffer; \
\
for(x = 0; x < IM_IMAGE_N_ELEMENTS(in); x++) \
alx] = exp(plx]); \
if(im_writeline(y, out, buffer)) \
return(-1); \
}oA

/+ Switch for all the types we can handle.
*/

switch(in—->BandFmt) {
case IM_BANDFMT_UCHAR: loop
case IM_BANDFMT_CHAR: loop
case IM_BANDFMT_USHORT: loop
case IM_BANDFMT_SHORT: loop
case IM BANDFMT_UINT: loop
case IM_BANDEFMT_INT: loop
case IM _BANDFMT_FLOAT: loop
case IM_BANDFMT_DOUBLE: loop

unsigned char, float); break;
char, float); break;

unsigned short, float); break;
short, float); break;

unsigned int, float); break;
int, float); break;

float, float); break;

(
(
(
(
(
(
(
(double, double); break;

default:
im_error("exptra", "internal error");
return(-1);

/* Success.
*/

return(0);

Figure 3.4: Calculate exp () for an image (cont)

44

3.3.1 Easy PIO with im wrapone () and
im wrapmany ()

PIO is a very general image IO system, and be-
cause of this flexibility, can be complicated to pro-
gram. As a convenience, VIPS offers an easy-to-use
layer over PIO with the funtions im_wrapone () and
im_wrapmany ().

If your image processing function is uninterested in
coordinates, that is, if your input and output images are
the same size, and each output pixel depends only upon
the value of the corresponding pixel in the input image
or images, then these functions are for you.

Consider the invert () function of figure 3.2. First,
we have to write the core of this as a buffer-processing
function:

#include <stdio.h>
#include <stdlib.h>

finclude <vips/vips.h>

/* p points to a buffer of pixels which
g points to the buffer
and n

* need inverting,
* we should write the result to,
* 1s the number of pels present.
*/

static void

invert_buffer (unsigned char =*p,

unsigned char *g, int n)
{
int i;
for(i = 0; i < n; i++)
qli] = 255 - pl[il;

Now we have to wrap up this very primitive expres-
sion of the invert operation as a PIO function. We use
im_wrapone () to do this. It has type:

int
im_wrapone (IMAGE *in, IMAGE =*out,

im_wrapone_fn fn, void xa, void xb
where:

void
(#im_wrapone_fn) (void *in, void =*out,
int n, *b)

void =*a, void

CHAPTER 3. WRITING VIPS OPERATIONS

almost the same type as our buffer-processing function
above. The values a and b are carried around by VIPS
for whatever use you fancy. invert () can now be
written as:

int
invert (

{

IMAGE *in, IMAGE =*out)
/* Check parameters.

*/
if (in->BandFmt != IM_BANDFMT_UCHAR | |
in->Bands != 1 ||
in->Coding != IM_CODING_NONE) {
im_error("invert", "bad image");
return(-1);

/* Set fields in output image.
*/
1f(

im_cp_desc(out, in))

return(-1);

/* Process! We don’t use either of the
* user parameters in this function,

* so leave them as NULL.
*/
if(im_wrapone(in, out,

(im_wrapone_fn)
NULL, NULL))
return(-1);

invert_buffer,

return(0);

And that’s all there is to it. This function will have all
of the desirable properties of PIO functions, while being
as easy to program as the WIO invert () earlier in
this chapter.

This version of invert () is not very general: it will
only accept one-band unsigned char images. It is easy
to modify for n-band images:

/* As before,
* parameters to pass in the number of
* bands in the image.

*/

static void

invert_buffer (unsigned char x*p,
unsigned char *gq, int n,
IMAGE =*in)

but use one of the user

3.3. PROGRAMMING PIO FUNCTIONS

int i;

int sz = n * in->Bands;

for(i = 0; i < sz; i++)
qli] = 255 - pli];

We must also modify invert ():

int
invert (

{

IMAGE *in, IMAGE =*out)
/* Check parameters.
*/
if (in—->BandFmt != IM_BANDFMT_UCHAR
in->Coding IM_CODING_NONE) {
im_error("invert", "bad image"
return(-1);

/+ Set fields in output image.
*/
1f(

im_cp_desc(out, in))

return(-1);

/* Process!
* 1s the number of bands involved.
*/
if(im_wrapone(in, out,
(im_wrapone_fn)invert_buffer,
in, NULL))
return(-1);

return(O

)i

There are two significant hidden traps here. First, in-
side the buffer processing functions, you may only read
the contents of the user parameters a and b, you may not
write to them. This is because on a multi-CPU machine,
several copies of your buffer-processing functions will
be run in parallel — if they all write to the same place,
there will be complete confusion. If you need writeable
parameters (for example, to count and report overflows),
you can’t use im_wrapone (), you'll have to use the
PIO system in all its gory detail, see below.

Secondly, your buffer processing function may not be
called immediately. VIPS may decide to delay eval-
uation of your operation until long after the call to

The first user-parameter

45

invert () has returned. As a result, care is needed
to ensure that you never read anything in your buffer-
processing function that may have been freed. The best
way to ensure this is to use the local resource allocators,
such as im_open_local () and im_malloc ().
This issue is discussed at length in the sections below,
and in §2.1 on page 13.

im_wrapone () is for operations which take ex-
actly one input image. VIPS provides a second function,
im_wrapmany (), which works for any number of in-
put images. The type of im_wrapmany () is slightly
different:

int

im_wrapmany (IMAGE xxin, IMAGE =xout,

'l im_wrapmany_fn fn, void xa, void b)

)

void
(*im_wrapmany_fn) (void xxin, void =xout,
int n, void =*a, void *b)

im_wrapmany () takes a NULL-terminated array of
input images, and creates a NULL-terminated array of
buffers for the use of your buffer processing function. A
function to add two IM_BANDFMT_UCHAR images to
make a IM_BANDFMT_UCHAR image might be written

static void
add_buffer (unsigned char =*xin,

unsigned short =xout, int n,
IMAGE #*in)
{
int 1i;
int sz = n * in->Bands;

14

unsigned char *pl = in[0]
unsigned char *p2 in[1]

4

it+)
+ p2[i];

for(i

out [i]

SzZ;

0;
=]

i <
plli
This can be made into a PIO function with:

int
add_uchar (
IMAGE =*out

IMAGE *il,
)

IMAGE *i2,

IMAGE <*invec[3];

46 CHAPTER 3. WRITING VIPS OPERATIONS
/* Check parameters. We don’t need twhere valid holds the sub-area of image im that this
+ check that il and i2 are the sameregion represents, and Rect is defined as:
* size, im_wrapmany () does that for
* Uus. typedef struct {
%/ int left, top;
if(il->BandFmt != IM_BANDFMT_UCHAR || int width, height;
il->Coding != IM_CODING_NONE || } Rect;
i2->BandFmt != IM_BANDFMT_UCHAR | |
i2->Coding != IM_CODING_NONE || two macros are available for Rect calculations:

il->Bands != i2->Bands) {

im_error ("add_uchar", "bad in")%nt IM_RECT_RIGHT (Rect =*r)

return(-1);

/* Set fields in output image. As
* input image,
*/

if(im_cp_desc(out, il))

return(-1);

out—->BandFmt = IM BANDEFMT_USHORT;

out->Bbits = IM_BBITS_SHORT;

Process!

/ %

* is the number of bands involved. ~,
* invec is a NULL-terminated array %%n

* input
*/
invec[0]
invec[2] =
1f(

images.

= 11; invec[l] = i2;
NULL;

im_wrapmany (invec, out,

(im_wrapone_fn)add_buffer,
il, NULL))

return(-1);

return(0);

3.3.2 Region descriptors

Regions are the next layer of abstraction above image
descriptors. A region is a small part of an image, held
in memory ready for processing. A region is defined as:

typedef struct {
Rect valid;
IMAGE im;

and some other private fields,
used by VIPS for housekeeping
} REGION;

The first user-parameter,

int IM_RECT_BOTTOM(Rect =*r)

where IM_RECT_RIGHT () returns left + width,
and IM_RECT_BOTTOM () returns top + height.

but we want a UsHorTd small library of C functions are also avail-

able for Rect algebra, see the manual pages for
im_rect_intersectrect ().

Regions are created with im_region_create ().
This has type:
REGION xim_region_create(IMAGE xim)
im_region_create () returns a pointer to a new re-
structure, or NULL on error. Regions returned by
im_region_create () are blank — they contain no
image data and cannot be read from or written to. See
the next couple of sections for calls to fill regions with
data.

Regions are destroyed with im_region_free ().
It has type:

int im_region_free(REGION xreg)

And, as usual, returns 0 on success and non-zero on er-
ror, setting im_error (). You must free all regions
you create. If you close an image without freeing all the
regions defined on that image, the image is just marked
for future closure — it is not actually closed until the
final region is freed. This behaviour helps to prevent
dangling pointers, and it is not difficult to make sure
you free all regions — see the examples below.

3.3.3 Image input with regions

Before you can read from a region, you need to call
im_prepare () to fill the region with image data. It
has type:

int im_prepare(REGION x*reg, Rect *r)

3.3. PROGRAMMING PIO FUNCTIONS

Area r of the image on which reg has been created
is prepared and attached to the region.

Exactly what this preparation involves depends upon
the image — it can vary from simply adjusting some
pointers, to triggering the evaluation of a series of other
functions. If it returns successfully, im_prepare ()
guarantees that all pixels within reg—>valid may be
accessed. Note that this may be smaller or larger than
r,since im_prepare () clips r against the size of the
image.

Programs can access image data in the region by call-
ing the macro IM_REGION_ADDR (). It has type

char *IM_REGION_ADDR(REGION =xreg,
int x, int vy)

Provided that point (x,y) lies inside reg->valid,
IM_REGION_ADDR () returns a pointer to pel (x,y).
Adding to the result of IM_REGION_ADDR () moves
to the right along the line of pels, provided
you stay strictly within reg->valid. Add
IM_REGION_LSKIP () to move down a line, see be-
low. IM_REGION_ADDR () has some other useful fea-
tures — see the manual page.

Other macros are available to ease address calcula-
tion:

int
int

IM_REGION_LSKIP (REGION =xreg)
IM_REGION_N_ELEMENTS (REGION *reg
int IM_REGION_SIZEOF_LINE (
These find the number of bytes to add to the result of
IM_REGION_ADDR () to move down a line, the num-
ber of band elements across the region and the number
of bytes across the region.

Figure 3.5 on page 50 is a version of average ()
which uses regions rather than WIO input. Two
things: first, we should really be using vips_sink (),
see §3.3.4, to do the rectangle algebra for us. Sec-
ondly, note that we call im_pincheck () rather than
im_incheck (). im_pincheck () signals to the
IO system that you are a PIO-aware function, giving
im_prepare () much more flexibility in the sorts of
preparation it can do. Also see the manual pages for
im_poutcheck () and im_piocheck ().

This version of average () can be called in exactly
the same way as the previous one, but this version has
the great advantage of not needing to have the whole of
the input image available at once.

We can do one better than this — if the image is be-
ing split into small pieces, we can assign each piece to

)

47

a separate thread of execution and get parallelism. To
support this splitting of tasks, VIPS has the notion of a
sequence.

3.3.4 Splitting into sequences

A sequence comes in three parts: a start function, a pro-
cessing function, and a stop function. When VIPS starts
up a new sequence, it runs the start function. Start func-
tions return sequence values: a void pointer representing
data local to this sequence. VIPS then repeatedly calls
the processing function, passing in the sequence value
and a new piece of image data for processing. Finally,
when processing is complete, VIPS cleans up by calling
the stop function, passing in the sequence value as an
argument. The types look like this:

void =

(xstart_fn) (IMAGE xout,
void xa, void b)

int

(*process_fn) (REGION xregqg,
void =xseq,

int

(*stop_£fn) (void =seq,

void xa, void *b)

void =*a, void

The values a and b are carried around by VIPS for your
use.
For functions like average () which consume im-

REGION #reg goes but produce no image output, VIPS provides

vips_sink (). This has type:

int vips_sink(VipsImage =xin,
VipsStart start,
VipsGenerate generate,
VipsStop stop,

void xa, void *b)

VIPS starts one or more sequences, runs one or more
processing functions over image in until all of in has
been consumed, and then closes all of the sequences
down and returns. VIPS guarantees that the regions
the process_fn () is given will be complete and dis-
joint, that is, every pixel in the image will be passed
through exactly one sequence. To make it possible for
the sequences to each contribute to the result of the func-
tion in an orderly manner, VIPS also guarantees that all
start and stop functions are mutually exclusive.

An example should make this clearer. This version of
average () is very similar to the average function in
the VIPS library — it is only missing polymorphism.

*b

48 CHAPTER 3. WRITING VIPS OPERATIONS

#include <stdio.h>
#include <stdlib.h>
#include <vips/vips.h>
finclude <vips/region.h>

int
average (IMAGE =xim, double *out)
{

int total, i, y;

REGION *reg;

Rect area, ~»*r;

/* Check im.

*/
if(im_pincheck (im))
return(-1);
if(im->BandFmt != IM_BANDFMT_UCHAR || im->Coding != IM_CODING_NONE
im_error("average", "uncoded uchar images only");
return(-1);

/* Make a region on im which we can use for reading.
*/
if(!'(reg = im_region_create(im)))
return(-1);

Figure 3.5: First PIO average of image

)

{

3.3. PROGRAMMING PIO FUNCTIONS

/+ Move area over the image in 100x100 pel chunks.
* im_prepare() will clip against the edges of the image
* for us.

*/
total = 0;
r = ®->valid;
area.width = 100; area.height = 100;
for(area.top = 0; area.top < im->Ysize; area.top += 100)
for(area.left = 0; area.left < im->Xsize;

area.left += 100) {
/+ Fill reg with pels.
*/

if(im_prepare(reg, &area)) {

/+* We must free the region!
*/

im_region_free(reqg);
return(-1);

/+ Loop over reg, adding to our total.

*/
for(y = r->top; y < IM_RECT_BOTTOM(r); y++) {
unsigned char *p = IM_REGION_ADDR(reg, r—->left, vy);

for(i = 0; i < IM_REGION_N_ELEMENTS(reg); i++)
total += pl[i];

/+ Make sure we free the region.
*/

im_region_free(reqg);
/+ Find average.
*/
xout = (double) total / (IM_IMAGE_N_ELEMENTS(im) * im->Ysize);

return(0);

Figure 3.6: First PIO average of image (cont.)

50 CHAPTER 3. WRITING VIPS OPERATIONS

#include <stdio.h>
#include <stdlib.h>
#include <vips/vips.h>
#include <vips/region.h>

Start function for average (). We allocate a small piece of
storage which this sequence will accumulate its total in. Our
sequence value is just a pointer to this storage area.

P A .

The first of the two pointers VIPS carries around for us is a
*+ pointer to the space where we store the grand total.

x/

static int =«

average_start (IMAGE xout)

{

int xseq = IM_NEW(out, int);

if(!'seq)
return(NULL);
*seq = 0;

return(seq);

/+ Stop function for average (). Add the total which has
% accumulated in our sequence value to the grand total for
* the program.
x/
static int
average_stop(int =*seq, int xgtotal)
{
/* Stop functions are mutually exclusive, so we can write
* to gtotal without clashing with any other stop functions.
*/
*gtotal += *seq;

return(0);

Figure 3.7: Final PIO average of image

3.3. PROGRAMMING PIO FUNCTIONS

/+ Process function for average().
* add that total to the sequence

static int

average_process (

{

int total, i, vy;
Rect xr =

/+ Get the appropriate part of

*/
1f(
return(-1);

/+ Loop over the
*/
total = 0;
for(y = r—>top;
unsigned char

for(i = 0;

im_prepare(regq,

REGION =*reg,

value.

int *xseq)

®->valid;

r))

region.

y < IM_RECT_BOTTOM (

*p

total += pli];

IM_REGION_ADDR (

r

i < IM_REGION_N_ELEMENTS (

/+ Add to the total for this sequence.

*/
*seq += total;

return(0);

)i oyttt) |
reqg, r—->left,
reg); i++

Total this region,

Figure 3.8: Final PIO average of image (cont.)

and

the input image ready.

Yy

)

)i

51

52 CHAPTER 3. WRITING VIPS OPERATIONS

/+ Find average of image.
*/
int
average (IMAGE *im, double xout)
{
/* Accumulate grand total here.
*/
int gtotal = 0;

/* Prepare im for PIO reading.
*/
if(im_pincheck(im))
return(-1);

/+ Check it is the sort of thing we can process.
*/
if(im—->BandFmt != IM_BANDFMT_UCHAR | |
im->Coding != IM_CODING_NONE) {
im_error ("average", "uncoded uchar images only");
return(-1);

/+ Loop over the image in pieces, and possibly in parallel.
*/
if(vips_sink(im,
average_start, average_process, average_stop,
>otal, NULL))
return(-1);

/+ Calculate average.
*/
xout = (double) gtotal / (IM_IMAGE_N_ELEMENTS(im) * im->Ysize);

return(0);

Figure 3.9: Final PIO average of image (cont.)

3.3. PROGRAMMING PIO FUNCTIONS

There are a couple of variations on
im_prepare (): you can use im_prepare_to ()
to force writing to a particular place, and
im_prepare_thread () to use threaded evalu-
ation. See the man pages.

3.3.5 Output to regions

Regions are written to in just the same way they are
read from — by writing to a pointer found with the
IM_REGION_ADDR () macro.

vips_sink () does input — im_generate ()
does output. It has the same type as vips_sink ():

int

im_generate (IMAGE =xout,
void * (*start_fn) (),

int (xprocess_fn) (),
int (*stop_£fn) (),
void xa, void *b)

The region given to the process function is ready for
output. Each time the process function is called, it
should fill in the pels in the region it was given. Note
that, unlike vips_sink (), the areas the process func-
tion is asked to produce are not guaranteed to be either
disjoint or complete. Again, VIPS may start up many
process functions if it sees fit.

Here is invert (), rewritten to use PIO. This
piece of code makes use of a pair of standard start
and stop functions provided by the VIPS library:
im_start_one () and im_stop_one (). They
assume that the first of the two user arguments to
im_generate () isthe inputimage. They are defined
as:

REGION «
im_start_one(

{

IMAGE #*out, IMAGE #*in)

return(im_region_create(in));
}
and:
int
im_stop_one(REGION =xseq)
{
return(im_region_free(seq));

53

They are useful for simple functions which expect
only one input image. See the manual page for
im_start_many () for many-input functions.

Functions have some choice about the way they
write their output. Usually, they should just write
to the region they were given by im_generate ().
They can, if they wish, set up the region for out-
put to some other place. See the manual page for
im_region_region (). See also the source for
im_copy () and im_extract () for examples of
these tricks.

Note also the call to im_demand_hint (). This
function hints to the IO system, suggesting the sorts of
shapes of region this function is happiest with. VIPS
supports four basic shapes — choosing the correct shape
can have a dramatic effect on the speed of your function.
See the man page for full details.

3.3.6 Callbacks

VIPS lets you attach callbacks to image descriptors.
These are functions you provide that VIPS will call
when certain events occur. There are more callbacks
than are listed here: see the man page for full details.

Close callbacks

These callbacks are invoked just before an image is
closed. They are useful for freeing objects which are
associated with the image. All callbacks are triggered
in the reverse order to the order in which they were at-
tached. This is sometimes important when freeing ob-
jects which contain pointers to other objects. Close call-
backs are guaranteed to be called, and to be called ex-
actly once.

Use im_add_close_callback () toadd a close
callback:

void =,
IMAGE «,

typedef int (xim_callback) (
int im_add_close_callback (
im_callback_fn,

void *, void *)

As with im_generate (), the two void =« point-
ers are carried around for you by VIPS and may be used
as your function sees fit.

Preclose callbacks

Preclose callbacks are called before any shutdown has
occured. Everything is still alive and your callback can

void =

54

CHAPTER 3. WRITING VIPS OPERATIONS

#include <stdio.h>
#include <stdlib.h>
finclude <vips/vips.h>
#include <vips/region.h>

/+ Process function for invert (). Build the pixels in or

* from the appropriate pixels in ir.

static int
invert_process(REGION xor, REGION *ir)

{

Rect xr = &or->valid;
int i, vy;

/* Ask for the part of ir we need to make or. In this
* case, the two areas will be the same.
*/
if(im_prepare(ir, r))
return(-1);

/* Loop over or writing pels calculated from ir.

*/

for(y = r—>top; y < IM_RECT_BOTTOM(r); y++) {
unsigned char *p = IM_REGION_ADDR(ir, r->left, vy);
unsigned char g = IM_REGION_ADDR(or, r->left, y);

= 0; 1 < IM_REGION_N_ELEMENTS(or); i++)

for(i
qli]l = 255 - pli];

/x Success!
*/

return(0);

Figure 3.10: PIO invert

3.3. PROGRAMMING PIO FUNCTIONS

/+ Invert an image.
*/
int
invert (IMAGE %in, IMAGE ~*out)
{
/* Check descriptors for PIO compatibility.
*/
if(im_piocheck(in, out))
return(-1);

/* Check input image for compatibility with us.

*/
if(in->BandFmt != IM_BANDEFMT_UCHAR || in->Coding != IM_CODING_NONE) {
im_error("invert", "uncoded uchar images only");
return(-1);

/* out inherits from in, as before.
*/
if(im_cp_desc(out, in))
return(-1);

/* Set demand hints for out.
*/
if(im_demand_hint (out, IM_THINSTRIP, in, NULL))
return(-1);

/+ Build out in pieces, and possibly in parallel!
*/
if(im_generate(out,
im_start_one, invert_process, im_stop_one,
in, NULL))
return(-1);

return(0);

Figure 3.11: PIO invert (cont.)

55

56

do anything to the image. Preclose callbacks are guaran-
teed to be called, and to be called exactly once. See the
manual page for im_add_preclose_callback()
for full details.

Eval callbacks

These are callbacks which are invoked periodically
by VIPS during evaluation. The callback has ac-
cess to a struct containing information about the
progress of evaluation, useful for user-interfaces
built on top of VIPS. See the manual page for
im_add_eval_callback () for full details.

3.3.7 Memory allocation revisited

When you are using PIO, memory allocation becomes
rather more complicated than it was before. There are
essentially two types of memory which your function
might want to use for working space: memory which is
associated with each instance of your function (remem-
ber that two copies of you function may be joined to-
gether in a pipeline and be running at the same time —
you can’t just use global variables), and memory which
is local to each sequence which VIPS starts on your ar-
gument image.

The first type, memory local to this function instance,
typically holds copies of any parameters passed to your
image processing function, and links to any read-only
tables used by sequences which you run over the image.
This should be allocated in your main function.

The second type of memory, memory local to a se-
quence, should be allocated in a start function. Because
this space is private to a sequence, it may be written
to. Start and stop functions are guaranteed to be single-
threaded, so you may write to the function-local mem-
ory within them.

3.4 Programming in-place func-
tions

VIPS includes a little support for in-place functions —
functions which operate directly on an image, both read-
ing and writing from the same descriptor via the data
pointer. This is an extremely dangerous way to handle
10, since any bugs in your program will trash your input
image.

CHAPTER 3. WRITING VIPS OPERATIONS

Operations of this type should call im_rwcheck ()
instead of im_incheck (). im_rwcheck () tries to
get a descriptor ready for in-place writing. For example,
a function which cleared an image to black might be
written as:

#include <stdio.h>
#include <memory.h>

#include <vips/vips.h>
int

black_inplace (
{

IMAGE *im)

/* Check that we can RW to im.
*/
1f(

im_rwcheck (im))

return(-1);

/* Zap the image!
*/
memset (im->data, O,
IM_IMAGE_SIZEOF_LINE (
im->Ysize);

im) =«

)i

return(O

This function might be called from an application as:

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>

void
zap (char xname)
{
IMAGE =im;
if(!'(im = im_open(name, "rw"))
black_inplace(im) ||
im_updatehist (im, "zap image"
im_close(im))
error_exit ("failure!");

)

Chapter 4

VIPS reference

4.1 Introduction

/bf VIPS reference documentation is in the process of
switching to gtkdoc. Half-done manuals are distributed
with VIPS, and they should be all done by the next ver-
sion.

In the meantime, this old and slightly outdated chap-
ter has been left unchanged from the previous version.

This chapter introduces the functions available in the
VIPS image processing library. For detailed informa-
tion on particular functions, refer to the UNIX on-line
manual pages. Enter (for example):

example% man im_abs

for information on the function im_abs ().
All the comand-line vips operations will print help
text too. For example:

example% vips im_extract
usage: vips im_extract input output
left top width height band
where:
input is of type "image"
output is of type "image"
left is of type "integer"
top is of type "integer"
width is of type "integer"
height is of type "integer"
band is of type "integer"
extract area/band, from package
"conversion"
flags: (PIO function)
(coordinate transformer)
(area operation)
(result can be cached)
vips: error calling function
im_run_command: too few arguments

57

Once you have found a function you need to use, you
can call it from a C program (see §2.1 on page 13), you
can call it from C++ or Python (see §1.1 on page 1),
you can call it from the nip2 ((see the nip Manual), or
SIAM graphical user-interfaces, or you can run it from
the UNIX command line with the vips program. For
example:

$ vips im vips2tiff cam.v tl.tif none
$ vips im_tiff2vips tl.tif t2.v.v O

$ vips im_equal cam.v t2.v t3.v

$ vips im_min t3.v

255

VIPS may have been set up at your site with a set of
links which call the vips program for you. You may also
be able to type:

$ im_vips2tiff cam.v tl.tif none
$ im_tiff2vips tl.tif t2.v.v O

$ im_equal cam.v t2.v t3.v

$ im min t3.v

There are a few VIPS programs which you cannot run
with vips, either because their arguments are a very
strange, or because they are complete mini-applications
(like vips2dj). These programs are listed in table 4.1,
see the man pages for full details.

4.2 VIPS packages

4.2.1 Arithmetic

See Figure 4.1 on page 62.

Arithmetic functions work on images as if each band
element were a separate number. All operations are
point-to-point — each output element depends exactly

CHAPTER 4. VIPS REFERENCE

Name Description

binfile Read RAW image

debugim Print an image pixel by pixel
edvips Change fields in a VIPS header
header Print fields from a VIPS header
printlines Print an image a line at a time
vips VIPS universal main program
vips-7.14 VIPS wrapper script
findmosaic Analyse a set of images for overlaps
mergeup Join a set of images together

cooc_features
cooc
glds_features
glds
simcontr
sines
spatres
squares
batch_crop

batch_image_convert
batch_rubber_sheet

light_correct
mitsub
shrink width
vdump
vips2dj

Calculate features of a co-occurence matrix
Calculate a co-occurence matrix

Calculate features of a grey-level distribution matrix
Calculate a grey-level distribution matrix
Demonstrate simultaneous contrast

Generate a sinusoidal test pattern

Generate a spatial resolution test pattern

Generate some squares

Crop a lot of images

File format convert a lot of images

Warp a lot of images

Correct a set of images for shading errors

Format a VIPS image for output to a Mitsubishi 3600
Shrink to a specific width

VIPS to mono Postscript

VIPS to high-quality colour Postscript

Table 4.1: Miscellaneous programs

4.2. VIPS PACKAGES

upon the corresponding input element. All (except in
a few cases noted in the manual pages) will work with
images of any type (or any mixture of types), of any size
and of any number of bands.

Arithmetic operations try to preserve precision by in-
creasing the number of bits in the output image when
necessary. Generally, this follows the ANSI C con-
ventions for type promotion — so multiplying two
IM_BANDFMT_UCHAR images together, for example,
produces a IM_BANDEFMT_USHORT image, and taking
the im_costra () of a IM_BANDFMT_USHORT im-
age produces a IM_BANDFMT_FLOAT image. The de-
tails of the type conversions are in the manual pages.

4.2.2 Relational

See Figure 4.2 on page 63.

Relational functions compare images to other images
or to constants. They accept any image or pair of im-
ages (provided they are the same size and have the same
number of bands — their types may differ) and produce
a IM_BANDFMT_UCHAR image with the same number
of bands as the input image, with 255 in every band el-
ement for which the condition is true and 0 elsewhere.

They may be combined with the boolean functions to
form complex relational conditions. Use im_max ()
(or im_min ()) to find out if a condition is true (or
false) for a whole image.

4.2.3 Boolean

See Figure 4.3 on page 63.

The boolean functions perform boolean arithmetic on
pairs of IM_BANDFMT_UCHAR images. They are use-
ful for combining the results of the relational and mor-
phological functions. You can use im_eorconst ()
with 255 as im_not ().

4.2.4 Colour

See Figure 4.5 on page 65.

The colour functions can be divided into two main
types. First, functions to transform images between the
different colour spaces supported by VIPS: RGB (also
referred to as disp), sRGB, XYZ, Yxy, Lab, LabQ,
Lab$s, LCh and UCS), and second, functions for calcu-
lating colour difference metrics. Figure 4.4 shows how
the VIPS colour spaces interconvert.

The colour spaces supported by VIPS are:

59

LabQ This is the principal VIPS colorimetric storage
format. See the man page for im_TLabQ2Lab ()
for an explanation. You cannot perform calcula-
tions on LabQ images. They are for storage only.
Also refered to as LABPACK.

Labs This format represents coordinates
in CIE L*a*b* space as a three- band
IM_BANDFMT_SHORT image, scaled to fit

the full range of bits. It is the best format for
computation, being relatively compact, quick, and
accurate. Colour values expressed in this way are
hard to visualise.

Lab Lab colourspace represents CIE L*a*b* colour
values with a three-band IM_BANDFMT_FLOAT
image. This is the simplest format for general
work: adding the constant 50 to the L channel, for
example, has the expected result.

XYZ CIE XYZ colour space represented as a three-band
IM_BANDFMT_FLOAT image.

XYZ CIE Yxy colour space represented as a three-band
IM_BANDFMT_FLOAT image.

RGB (also refered to as disp) This format is similar
to the RGB colour systems used in other packages.
If you want to export your image to a PC, for ex-
ample, convert your colorimetric image to RGB,
then turn it to TIFF with im_vips2tiff ().
You need to supply a structure which charac-
terises your display. See the manual page for
im_col_XYZ2rgb () for hints on these guys.

VIPS also supports sRGB. This is a version of
RGB with a carefully defined and standard conver-
sion from XYZ. See:

http://www.color.org/

LCh Like Lab, but rectangular ab coordinates are re-
placed with polar Ch (Chroma and hue) coordi-
nates. Hue angles are expressed in degrees.

UCS A colour space based on the CMC(1:1) colour dif-
ference measurement. This is a highly uniform
colour space, much better than CIE L*a*b* for
expressing small differences. Conversions to and
from UCS are extremely slow.

60 CHAPTER 4. VIPS REFERENCE

$ vips —-list arithmetic

im_abs - absolute value

im_acostra - acos of image (result in degrees)

im_add - add two images

im_asintra — asin of image (result in degrees)

im_atantra - atan of image (result in degrees)

im_avg - average value of image

im_point_bilinear - interpolate value at single point, linearly
im_bandmean - average image bands

im_ceil - round to smallest integal value not less than
im_cmulnorm - multiply two complex images, normalising output
im_costra - cos of image (angles in degrees)

im_cross_phase - phase of cross power spectrum of two complex images
im_deviate - standard deviation of image

im_divide - divide two images

im_explOtra - 10"pel of image

im_expntra - x"pel of image

im_expntra_vec - [x,y,2] "pel of image

im_exptra — e"pel of image

im_fav4 — average of 4 images

im_floor — round to largest integal value not greater than
im_gadd - calculate a*inl + b*xin2 + ¢ = outfile

im_invert - photographic negative

im_lintra — calculate axin + b = outfile

im_linreg — pixelwise linear regression

im_lintra_vec - calculate axin + b -> out, a and b vectors

im litecor - calculate max(white)«factorx (in/white), if clip == 1
im_loglOtra - logl0 of image

im_logtra - 1n of image

im_max - maximum value of image

im_maxpos — position of maximum value of image
im_maxpos_avg - position of maximum value of image, averaging in case of draw
im_maxpos_vec — position and value of n maxima of image
im_measure - measure averages of a grid of patches

im_min - minimum value of image

im_minpos — position of minimum value of image
im_minpos_vec - position and value of n minima of image

im _multiply - multiply two images

im_powtra - pel”x ofbuildimage

im_powtra_vec - pel”[x,y,z] of image

im_remainder - remainder after integer division
im_remainderconst - remainder after integer division by a constant
im_remainderconst_vec - remainder after integer division by a vector of constants
im_rint - round to nearest integal value

im_sign — unit vector in direction of wvalue

im_sintra - sin of image (angles in degrees)

im_stats - many image statistics in one pass

im_subtract - subtract two images

im_tantra - tan of image (angles in degrees)

Figure 4.1: Arithmetic functions

4.2. VIPS PACKAGES

61

$ vips —--list relational

im_blend -
im_equal -
im_equal_vec -
im_equalconst -
im_ifthenelse -
im_less -
im_less_vec -
im_lessconst -
im_lesseq -
im_lesseq_vec -
im_lesseqconst -
im_more -
im_more_vec -
im_moreconst -
im_moreeq -
im_moreeq_vec -
im_moreeqconst -
im_notequal -
im_notequal_vec -
im_notequalconst -

$ vips —--list boolean
im_andimage -
im_andimageconst -
im_andimage_vec -
im_orimage -
im_orimageconst -
im_orimage_vec -
im_eorimage -
im_eorimageconst -
im_eorimage_vec -
im_shiftleft -
im_shiftright -

use cond image to blend between images inl and in2
two images equal in value

image equals doublevec

image equals const

use cond image to choose pels from image inl or in2
inl less than in2 in value

in less than doublevec

in less than const

inl less than or equal to in2 in value

in less than or equal to doublevec

in less than or equal to const

inl more than in2 in value

in more than doublevec

in more than const

inl more than or equal to in2 in value

in more than or equal to doublevec

in more than or equal to const

two images not equal in value

image does not equal doublevec

image does not equal const

Figure 4.2: Relational functions

bitwise and of two images

bitwise and of an image with a constant
bitwise and of an image with a vector constant
bitwise or of two images

bitwise or of an image with a constant

bitwise or of an image with a vector constant
bitwise eor of two images

bitwise eor of an image with a constant
bitwise eor of an image with a vector constant
shift integer image n bits to left

shift integer image n bits to right

Figure 4.3: Boolean functions

62

v
AN

Any device with
an ICC profile

CHAPTER 4. VIPS REFERENCE

OO

Any VIPS RGB space

Figure 4.4: VIPS colour space conversion

All VIPS colourspaces assume a D65 illuminant.

The colour-difference functions calculate either AF
CIE L*a*b* (1976 or 2000) or AE CMC(1:1) on two
images in Lab, XYZ or disp colour space.

4.2.5 Conversion

See Figure 4.6 on page 66.

These functions may be split into three broad groups:
functions which convert between the VIPS numeric for-
mats (im_clip2fmt (), for example, converts an im-
age of any type to the specified IM_BANDFMT), func-
tions supporting complex arithmetic (im_c2amph (),
for example, converts a complex image from rectangu-
lar to polar co ordinates) and functions which perform
some simple geometric conversion (im_extract ()
forms a sub-image).

gbandjoin and the C function
im_gbandjoin() will do a bandwise join of
many images at the same time. See the manual pages.

4.2.6 Matricies

See Figure 4.8 on page 68.

VIPS uses matricies for morphological operations,
for convolutions, and for some colour-space con-
versions. There are two types of matrix: inte-
ger (INTMASK) and double precision floating point
(DOUBLEMASK).

For convenience, both types are stored in files as
ASCII. The first line of the file should start with the ma-
trix dimensions, width first, then on the same line an
optional scale and offset. The two size fields should be
integers; the scale and offset may be floats. Subsequent
lines should contain the matrix elements, one row per
line. The scale and offset are the conventional ones used
to represent non-integer values in convolution masks —
in other words:

value

result = + of fset

scale

If the scale and offset are missing, they default to 1.0
and 0.0. See the sections on convolution for more on the
use of these fields. So as an example, a 4 by 4 identity
matrix would be stored as:

O O O R
O O O b
o P O O
R O O O

And a 3 by 3 mask for block averaging with convolu-
tion might be stored as:

0

oW
=)
e)

4.2. VIPS PACKAGES 63

$ vips —--1list colour

im_LCh2Lab - convert LCh to Lab

im_LCh2UCS - convert LCh to UCS

im_Lab2LCh — convert Lab to LCh

im_TLab2LabQ — convert Lab to LabQ

im_ Lab2Lab$s - convert Lab to LabS$s

im_Lab2UCS - convert Lab to UCS

im_Lab2XYZ - convert D65 Lab to XYZ

im_Lab2XYZ_temp - convert Lab to XYZ, with a specified colour temperature
im_TLab2disp - convert Lab to displayable

im_LabQ2Labs — convert LabQ to Labs

im_LabQ2Lab - convert LabQ to Lab

im_LabQ2XY7Z - convert LabQ to XYZ

im_LabQ2disp - convert LabQ to displayable

im_LabS2LabQ - convert LabS to LabQ

im_LabS2Lab - convert LabS to Lab

im_UCS2LCh - convert UCS to LCh

im_UCS2Lab - convert UCS to Lab

im_UCS2XYZ — convert UCS to XYZ

im_XYZ2Lab - convert D65 XYZ to Lab

im_XYZ2Lab_temp - convert XYZ to Lab, with a specified colour temperature
im_ XY7z2UCS - convert XYZ to UCS

im_XYZ2Yxy — convert XYZ to ¥Yxy

im_XYZ2disp — convert XYZ to displayble

im_XYZ2sRGB — convert XYZ to sRGB

im_ Yxy2XYZ — convert Yxy to XYZ

im_dEOO_fromLab — calculate delta-E CIE2000 for two Lab images
im_dECMC_fromLab - calculate delta-E CMC(1l:1) for two Lab images
im_dECMC_fromdisp - calculate delta-E CMC(1l:1) for two displayable images
im_dE_fromLab — calculate delta-E for two Lab images

im_dE_fromXYZ - calculate delta-E for two XYZ images

im_dE_fromdisp — calculate delta-E for two displayable images
im_disp2Lab - convert displayable to Lab

im_disp2XYZ — convert displayable to XYZ

im_float2rad - convert float to Radiance packed

im_icc_ac2rc - convert LAB from AC to RC using an ICC profile
im_icc_export - convert a float LAB to an 8-bit device image with an ICC profi
im_icc_export_depth - convert a float LAB to device space with an ICC profile
im_icc_import — convert a device image to float LAB with an ICC profile
im_icc_import_embedded - convert a device image to float LAB using the embedded prof]
im_icc_present - test for presence of ICC library

im_icc_transform — convert between two device images with a pair of ICC profiles
im_lab_morph — morph colourspace of a LAB image

im_rad2float - convert Radiance packed to float

im_sRGB2XYZ - convert sRGB to XYZ

Figure 4.5: Colour functions

64 CHAPTER 4. VIPS REFERENCE

S vips —--1list conversion

im_bandjoin - bandwise join of two images

im_bernd - extract from pyramid as Jjpeg

im_black - generate black image

im_cZ2amph - convert real and imaginary to phase and amplitude
im_c2imag - extract imaginary part of complex image

im_c2ps - find power spectrum of complex image

im_c2real - extract real part of complex image

im_c2rect - convert phase and amplitude to real and imaginary
im_clip2c - convert to signed 8-bit integer

im_clip2cm — convert to complex

im_clip2d - convert to double-precision float

im_clip2dcm — convert to double complex

im_clip2f - convert to single-precision float

im_clip2fmt — convert image format to ofmt

im clip2i — convert to signed 32-bit integer

im_clip2s - convert to signed 16-bit integer

im_clip2ui - convert to unsigned 32-bit integer

im_clip2us - convert to unsigned 16-bit integer

im_clip - convert to unsigned 8-bit integer

im_copy - copy image

im_copy_morph - copy image, setting pixel layout

im_copy_swap - copy image, swapping byte order

im_copy_set - copy image, setting informational fields
im_copy_set_meta - copy image, setting a meta field
im_extract_area - extract area

im_extract_areabands - extract area and bands

im_extract_band - extract band

im_extract_bands - extract several bands

im_extract - extract area/band

im_falsecolour — turn luminance changes into chrominance changes
im_fliphor - flip image left-right

im_flipver - flip image top-bottom

im_gbandjoin - bandwise join of many images

im_grid — chop a tall thin image into a grid of images
im_insert — insert sub-image into main image at position
im_insert_noexpand - insert sub-image into main image at position, no expansion
im_lrjoin - Jjoin two images left-right

im_mask2vips — convert DOUBLEMASK to VIPS image

im_msb - convert to uchar by discarding bits

im_msb_band - convert to single band uchar by discarding bits
im_print - print string to stdout

im_recomb — linear recombination with mask

im_replicate - replicate an image horizontally and vertically
im_ri2c - Jjoin two non-complex images to form complex

Figure 4.6: Conversion functions

4.2. VIPS PACKAGES

im_rotl180
im_rot270
im_rot90
im_scale
im_scaleps
im_rightshift_size
im_slice
im_subsample
im_system
im_tbjoin
im_ text
im_thresh
im_vips2mask

65

rotate image 180 degrees

rotate image 270 degrees clockwise
rotate image 90 degrees clockwise

scale image linearly to fit range 0-255
logarithmic scale of image to fit range 0-255
decrease size by a power-of-two factor
slice an image using two thresholds
subsample image by integer factors

run command on image

join two images top-bottom

generate text image

slice an image at a threshold

convert VIPS image to DOUBLEMASK

im_wrap - shift image origin,

wrapping at sides

im_zoom - simple zoom of an image by integer factors

Figure 4.7: Conversion functions (cont.)

(in other words, sum all the pels in every 3 by 3 area,
and divide by 9).

This matrix contains only integer elements and so
could be used as an argument to functions expecting
both INTMASK and DOUBLEMASK matricies. However,
masks containing floating-point values (such as the out-
put of im_matinv ()) can only be used as arguments
to functions expecting DOUBLEMASKs.

A set of functions for mask input and output are also
available for C-programmers — see the manual pages
for im_read_dmask (). For other matrix functions,
see also the convolution sections and the arithmetic sec-
tions.

4.2.7 Convolution

See Figure 4.9 on page 69.

The functions available in the convolution package
can be split into five main groups.

First, are the convolution functions. The most useful
function is im_conv () which will convolve any non-
complex type with an INTMASK matrix. The output im-
age will have the same size, type, and number of bands
as the input image. Of the other im_conv () functions,
functions whose name ends in _raw do not add a black
border around the output image, functions ending in £
use a DOUBLEMASK matrix and write float (or double)
output, and functions containing sep are for seperable
convolutions. im_compass (), im_lindetect ()
and im_gradient () convolve with rotating masks.

im_embed () is used by the convolution functions to
add the border to the output.

Next, are the build functions.
im_gauss_xmask () and its ilk generate gaussian
masks, im_log_=+mask () generate logs of Lapla-
cians. im_addgnoise () and im_gaussnoise ()
create or add gaussian noise to an image.

Two functions do correlation: im_fastcor () does
a quick and dirty correlation, im_spcor () calculates
true spatial correlation, and is rather slow.

Some functions are provided for analysing images:
im_zerox () counts zero-crossing points in an image,
im_mpercent () finds a threshold that will isolate a
percentage of points in an image.

Finally, im_resize_linear () and
im_shrink () do as you would expect.

4.2.8 In-place operations

See Figure 4.10 on page 70.
A few of the in-place operations are available from
the command-line. Most are not.

4.2.9 Frequency filtering

See Figure 4.11 on page 70.

The basic Fourier functions are im_fwfft () and
im_invfft (), which calculate the fast-fourier trans-
form and inverse transform of an image. Also
im_invfftr (), which just returns the real part of the

66

$ vips —-list matrix
im_matcat -
im_matinv -
im_matmul -
im_mattrn -

invert matrix

transpose matrix

CHAPTER 4. VIPS REFERENCE

append matrix in2 to the end of matrix inl

multiply matrix inl by matrix in2

Figure 4.8: Matrix functions

inverse transform. The Fourier image has its origin at
pel (0,0) — for viewing, use im_rotqguad () to move
the origin to the centre of the image.

Once an image is in the frequency domain, it can
be filtered by multiplying it with a mask image. The
VIPS mask generator is im_create_fmask () see
the manual page for details of the arguments, but it will
create low pass, high pass, ring pass and band pass fil-
ters, which may each be ideal, Gaussian or Butterworth.
There is also a fractal mask option.

The other functions in the package build on these base
facilities. im_freqgflt () transforms an input image
to Fourier space, multiplies it by a mask image, and
transforms it back again. im_flt_image_freq()
will create a mask image of the correct size for you, and
call im_freqflt (). im_disp_ps () will call the
right combinations of functions to make a displayable
power spectrum for an image.

4.2.10 Histograms and LUTSs

See Figure 4.12 on page 71.

VIPS represents histograms and look-up tables in the
same way — as images.

They should have either Xsize or Ysize setto 1,
and the other dimension set to the number of elements
in the table. The table can be of any size, have any band
format, and have any number of bands.

Use im_histgr () to find the histogram of an im-
age. Use im_histnD () to find the n-dimensional his-
togram of an n-band image. Perform operations on his-
tograms with im_histcum(), im_histnorm(),
im_histspec (), im_invertlut (). Visualise
histograms with im_histplot (). Use a histogram
(or LUT) to transform an image with im_maplut ().
Build a histogram from scratch with im_identity ()
orim_identity_ushort ().

Use im_lhistx« () for local histogram equalisa-
tion, and im_stdif« () for statisticaol differencing.
The im_tone_« () functions are for operations on the

L channel of a LAB image. Other functions are useful
combinations of these basic operations.

4.2.11 Morphology

See Figure 4.13 on page 71.

The morphological functions are used on one-band
IM_BANDFMT_UCHAR binary images (images contain-
ing only zero and not-zero). They search images for par-
ticular patterns of pixels (specified with the mask argu-
ment), either adding or removing pixels when they find
a match. They are useful for cleaning up images — for
example, you might threshold an image, and then use
one of the morphological functions to remove all single
isolated pixels from the result.

If you combine the morphological operators with the
mask rotators (im_rotate_imask45 (), for exam-
ple) and apply them repeatedly, you can achieve very
complicated effects: you can thin, prune, fill, open
edges, close gaps, and many others. For example, see
‘Fundamentals of Digital Image Processing’ by A. Jain,
pp 384-388, Prentice-Hall, 1989 for more ideas.

Beware that VIPS reverses the usual image process-
ing convention, by assuming white objects on a black
background.

The mask you give to the morphological functions
should contain only the values O (for background), 128
(for don’t care) and 255 (for object). The mask must
have odd length sides — the origin of the mask is taken
to be the centre value. For example, the mask:

33

128 255 128
255 0 255
128 255 128

applied to an image with im_erode (), will find all
black pixels 4-way connected with white pixels. Essen-
tially, im_dilate () sets pixels in the output if any
part of the mask matches, whereas im_erode () sets
pixels only if all of the mask matches.

4.2. VIPS PACKAGES

67

$ vips —-list convolution

im_addgnoise
im_compass

im_contrast_surface
im_contrast_surface_raw - find high-contrast points

im_conv
im_conv_raw
im_convf
im_convf_raw
im_convsep
im_convsep_raw
im_convsepf
im_convsepf_raw
im_convsub
im_dmask_xsize
im_dmask_ysize
im_embed
im_fastcor
im_fastcor_raw
im_gauss_dmask
im_gauss_imask
im_gauss_imask_sep
im_gaussnoise
im_grad_x
im_grad_y
im_gradcor
im_gradcor_raw
im_gradient
im_imask_xsize
im_imask_ysize
im_rank_image
im_lindetect
im_log_dmask
im_log_imask
im_maxvalue
im_mpercent
im_phasecor_fft
im_rank
im_rank_raw
im_read_dmask
im_resize_ linear
im_rotate_dmask45
im_rotate_dmask90
im_rotate_imask45
im_rotate_imask90
im_sharpen
im_shrink
im_spcor
im_spcor_raw
im_stretch3
im_zerox

0 and std. dev.
integer mask
an image

in an image

add gaussian noise with mean
convolve with 8-way rotating
find high-contrast points in

sigma

convolve

no border
with DOUBLEMASK
with DOUBLEMASK,
convolution
convolution,
convolution,

convolve,
convolve,
convolve, no border
seperable
seperable no border

seperable with DOUBLEMASK

seperable convolution, with DOUBLEMASK, no border
convolve uchar to uchar, sub-sampling by xskip, yskip
horizontal size of a doublemask

vertical size of a doublemask

embed in within a set of borders

fast correlate in2 within inl
fast correlate in2 within inl,
generate gaussian DOUBLEMASK
generate gaussian INTMASK
generate separable gaussian INTMASK
generate
horizontal difference image

vertical difference image

non—-normalised correlation of gradient of in2 within inl
non-normalised correlation of gradient of in2 within inl,
convolve with 2-way rotating mask

horizontal size of an intmask

vertical size of an intmask

point-wise pixel rank

convolve with 4-way rotating mask

generate laplacian of gaussian DOUBLEMASK

generate laplacian of gaussian INTMASK

point-wise maximum value
find threshold above which
non-normalised correlation

no border

there are percent values

of gradient of in2 within inl
xsize/ysize window
nth element of xsize/ysize window,
read matrix of double from file

to X by Y pixels with linear interpolation
DOUBLEMASK clockwise by 45 degrees
DOUBLEMASK clockwise by 90 degrees

rotate INTMASK clockwise by 45 degrees

rotate INTMASK clockwise by 90 degrees

sharpen high frequencies of L channel of LabQ
shrink image by xfac, yfac times
normalised correlation of in2 within inl
normalised correlation of in2 within inl,
stretch 3%, sub-pixel displace by xdisp/ydisp
find +ve or -ve zero crossings in image

rank filter nth element of

rank filter no border
resize
rotate
rotate

Figure 4.9: Convolution functions

image of gaussian noise with specified statistics

no black padding

no

68

$ vips —-list inplace
im_circle -
im_flood_blob_copy -
im_insertplace -
im_line -
im_lineset -

CHAPTER 4. VIPS REFERENCE

plot circle on image
flood while pixel ==
draw image sub inside image main at position
draw line between points
draw line between points

start pixel
(x,¥)
(x1,y1l) and

(x1,y1)

(x2,y2)

and (x2,y2)

Figure 4.10: In-place operations

S vips —--list freqg_filt
im_create_fmask -
im_disp_ps -
im_flt_image_freq -
im_fractsurf -
im_freqgflt -
im fwfft -
im_rotquad -
im_invfft -
im_invfftr -

create frequency domain filter mask

make displayable power spectrum

frequency domain filter image

generate a fractal surface of given dimension
frequency-domain filter of in with mask

forward fast-fourier transform

rotate image quadrants to move origin to centre
inverse fast-fourier transform

real part of inverse fast-fourier transform

Figure 4.11: Fourier functions

The _raw () version of the functions do not add
a black border to the output. im_cntlines () and
im profile are occasionally useful for analysing re-
sults.

See the boolean operations im_and (), im_or ()
and im_eor () for analogues of the usual set differ-
ence and set union operations.

4.2.12 Mosaicing

See Figure 4.14 on page 72.

These functions are useful for joining many small im-
ages together to make one large image. They can cope
with unstable contrast, and arbitary sub-image layout,
but will not do any geometric correction. The mosaic-
ing functions can be grouped into layers:

The lowest level functions are im_correl (). and
im_affine (). im_correl () searches a large im-
age for a small sub-image, returning the position of the
best sub-image match. im_affine () performs a gen-
eral affine transform on an image: that is, any transform
in which parallel lines remain parallel.

Next, im_lrmerge () and im_tbmerge () blend
two images together left-right or up-down.

Next up are im_lrmosaic () and
im_tbmosaic (). These use the two low-level

merge operations to join two images given just an
approximate overlap as a start point. Optional extra
parameters let you do ’balancing’ too: if your images
have come from a source where there is no precise con-
trol over the exposure (for example, images from a tube
camera, or a set of images scanned from photographic
sources), im_lrmosaic () and im_tbmosaic ()
will adjust the contrast of the left image to match the
right, the right to the left, or both to some middle value.

The functions im_lrmosaicl () and
im_tbmosaicl () are first-order analogues of
the basic mosaic functions: they take two tie-points and
use them to rotate and scale the right-hand or bottom
image before starting to join.

Finally, im_global_balance () can be used
to re-balance a mosaic which has been assem-
bled with these functions. It will generally do
a better job than the low-level balancer built into
im_lrmosaic() and im_tbmosaic (). See the
man page. 1im_remosaic () uses the same tech-
niques, but will reassemble the image from a different
set of source images.

4.2.13 CImg functions
See Figure 4.15 on page 73.

4.2. VIPS PACKAGES 69

$ vips —--list histograms_lut

im_gammacorrect - gamma-correct image

im_heq - histogram-equalise image

im_hist - find and graph histogram of image

im_histcum — turn histogram to cumulative histogram
im_histeq — form histogram equalistion LUT

im_histgr — find histogram of image

im_histnD - find 1D, 2D or 3D histogram of image
im_histnorm - form normalised histogram

im_histplot - plot graph of histogram

im_histspec — find histogram which will make pdf of in match ref
im_hsp — match stats of in to stats of ref

im_identity — generate identity histogram

im_identity_ushort - generate ushort identity histogram
im_ismonotonic - test LUT for monotonicity

im_lhisteq — local histogram equalisation

im_lhisteq_ raw — local histogram equalisation, no border
im_invertlut — generate correction table from set of measures
im_buildlut - generate LUT table from set of x/y positions
im_maplut - map image through LUT

im_project — find horizontal and vertical projections of an image
im_stdif - statistical differencing

im_stdif raw — statistical differencing, no border
im_tone_analyse - analyse in and create LUT for tone adjustment
im_tone_build - create LUT for tone adjustment of LabS images
im_tone_build _range - create LUT for tone adjustment

im_tone_map — map L channel of LabS or LabQ image through LUT

Figure 4.12: Histogram/LUT functions

$ vips —--list morphology

im_cntlines — count horizontal or vertical lines

im_dilate - dilate image with mask, adding a black border
im_dilate_raw - dilate image with mask

im_erode - erode image with mask, adding a black border
im_erode_raw - erode image with mask

im_profile — find first horizontal/vertical edge

Figure 4.13: Morphological functions

70

$ vips —-list mosaicing

im_align_bands
im_correl

im__ find lroverlap
im__ find_tboverlap
im_global_balance
im_global_balancef
im_lrmerge
im_lrmergel
im_lrmosaic
im_lrmosaicl
im_match_linear

im_match_linear_search

im_maxpos_subpel
im_remosaic
im_tbmerge
im_tbmergel
im_tbmosaic
im_tbmosaicl

CHAPTER 4. VIPS REFERENCE

align the bands of an image

search area around sec for match for area around ref
search for left-right overlap of ref and sec

search for top-bottom overlap of ref and sec
automatically rebuild mosaic with balancing

automatically rebuild mosaic with balancing, float output
left-right merge of inl and in2

first-order left-right merge of ref and sec

left-right mosaic of ref and sec

first-order left-right mosaic of ref and sec

resample ref so that tie-points match

- search sec, then resample so that tie-points match
subpixel position of maximum of (phase correlation) image
automatically rebuild mosaic with new files

top-bottom merge of inl and in2

first-order top-bottom merge of inl and in2

top-bottom mosaic of inl and in2

first-order top-bottom mosaic of ref and sec

Figure 4.14: Mosaic functions

These operations wrap the anisotropic blur function 4.2.17 Resample functions

from the CImg library. They are useful for removing

noise from images.

4.2.14 Other

See Figure 4.16 on page 73.

See Figure 4.19 on page 74.
These functions resample images with various inter-
polators.

These functions generate various test images. You
can combine them with the arithmetic and rotate func-
tions to build more complicated images.

The im_benchmarkx () operations are for testing

the VIPS SMP system.

4.2.15 10 functions

See Figure 4.17 on page 73.
These functions are related to the image 1O system.

4.2.16 Format functions

See Figure 4.18 on page 74.

These functions convert to and from various image
formats. See §2.5 on page 33 for a nice API over these.
VIPS can read more than these formats, see the man
page for VipsFormat.

4.2. VIPS PACKAGES 71

$ vips —--list cimg
im_greyc — noise-removing filter
im_greyc_mask — noise-removing filter, with a mask

Figure 4.15: CImg functions

$ vips —-list other

im_benchmark - do something complicated for testing

im_benchmark?2 — do something complicated for testing

im_benchmarkn - do something complicated for testing

im_eye - generate IM_BANDFMT_UCHAR [0,255] frequency/amplitude image
im_grey - generate IM_BANDFMT_UCHAR [0,255] grey scale image

im_feye — generate IM_BANDFMT_FLOAT [-1,1] frequency/amplitude image
im_fgrey — generate IM_BANDFMT_FLOAT [0,1] grey scale image

im_fzone - generate IM_BANDFMT_FLOAT [-1,1] zone plate image
im_make_xy — generate image with pixel value equal to coordinate

im_zone - generate IM_BANDFMT_UCHAR [0,255] zone plate image

Figure 4.16: Other functions

$ vips —--1list iofuncs

im_binfile - open a headerless binary file
im_cache — cache results of an operation
im_guess_prefix — guess install area
im_guess_libdir - guess library area
im_header_get_type - return field type

im_header_int - extract int fields from header
im_header_double - extract double fields from header
im_header_string — extract string fields from header
im_version - VIPS version number
im_version_string - VIPS version string

Figure 4.17: 10 functions

72

$ vips —--list format

im_csv2vips
im_jpeg2vips
im_magick2vips
im_png2vips
im_exr2vips
im_ppm2vips
im_analyze2vips
im_tiff2vips
im_vips2csv
im_vips2ijpeg
im_vips2mimejpeg
im_vips2png
im_vips2ppm
im_vips2tiff

$ vips —--list resample

im_affine
im_affinei
im_affinei_ _all

im_similarity_area

im_similarity

CHAPTER 4. VIPS REFERENCE

read a file in csv format

convert from Jjpeg

load file with libMagick

convert PNG file to VIPS image
convert an OpenEXR file to VIPS
read a file in pbm/pgm/ppm format
read a file in analyze format
convert TIFF file to VIPS image
write an image in csv format
convert to Jjpeg

convert to Jjpeg as mime type on stdout
convert VIPS image to PNG file
write a file in pbm/pgm/ppm format
convert VIPS image to TIFF file

Figure 4.18: Format functions

affine transform

affine transform

affine transform of whole image

output area xywh of similarity transformation
similarity transformation

Figure 4.19: Resample functions

