
nip2 Manual
Version 7.20

John Cupitt, Rachel Billinge, Joseph Padfield, Clare Richardson, David Saunders

“It’s quite simple really, and at the same time, rather complicated.”
— A. Haddock, Sea captain (rtd.)

This document formatted June 9, 2010

ii

Contents

1 Getting started 1

2 Tutorial 3
2.1 Quick interface tour . 3
2.2 nip2 for reflectogram mosaics . 6
2.3 nip2 for nerds . 7

3 Assembling infrared mosaics 11
3.1 Infrared imaging . 11

3.1.1 Setting up your system . 11
3.1.2 Capturing the data . 12
3.1.3 Correcting illumination . 13
3.1.4 Correcting with the command-line tool . 13
3.1.5 Correcting within nip2 . 14

3.2 Assembling the mosaic . 14
3.3 Balancing the mosaic . 15
3.4 Other nip2 features useful for reflectograms . 15
3.5 Printing . 15

4 Reference 17
4.1 Image view window . 17
4.2 File select dialogs . 18
4.3 Image processing window . 19

4.3.1 Columns . 20
4.3.2 Rows . 20
4.3.3 Applying operations to objects . 21
4.3.4 Batch processing . 21
4.3.5 Error handling . 22
4.3.6 Making menu items out of columns . 22

4.4 The programming window . 22
4.5 Command-line interface . 22

4.5.1 Using expression mode . 23
4.5.2 Using script mode . 23
4.5.3 Using --set . 23
4.5.4 Other modes . 24

iii

iv CONTENTS

5 Image processing menus 25
5.1 Colour . 25
5.2 Filter . 26
5.3 Histogram . 27
5.4 Image . 28
5.5 Math . 29
5.6 Matrix . 29
5.7 Object . 29
5.8 Tasks . 29

5.8.1 Capture . 29
5.8.2 Mosaic . 30
5.8.3 Picture Frame . 30
5.8.4 Print . 30

6 Programming 31
6.1 Load and save . 31
6.2 Using an external editor . 31
6.3 Syntax . 31
6.4 Naming conventions . 32
6.5 Evaluation . 32
6.6 Operators . 34

6.6.1 The real type . 34
6.6.2 The complex type . 36
6.6.3 The character type . 36
6.6.4 The boolean type . 36
6.6.5 The list type . 36
6.6.6 The function type . 37
6.6.7 The image type . 37

6.7 Lists and recursion . 38
6.8 Lazy programming . 38
6.9 Pattern matching . 38
6.10 The standard libraries . 40
6.11 Classes . 40

6.11.1 Parameterised classes . 42
6.11.2 Inheritance . 42
6.11.3 Minor class features . 43

6.12 Controlling the interface . 43
6.12.1 Tools and toolkits . 43
6.12.2 Workspaces . 44
6.12.3 The Image class . 45
6.12.4 The Colour class . 45

6.13 The Object class . 45
6.14 Optimisation . 45
6.15 Calling VIPS functions . 45

A Configuration 49
A.0.1 Calculation . 49
A.0.2 Image display . 50
A.0.3 Other options . 50

List of Figures

1.1 nip2 as it starts up . 1

2.1 After loading an image . 3
2.2 Image view window . 3
2.3 Image view window with marked regions . 4
2.4 Main window, two regions marked . 4
2.5 Using Rotate / Free . 5
2.6 Using Join / Left to Right . 5
2.7 The toolkit browser . 5
2.8 Loading the sample images . 6
2.9 Ready to join . 7
2.10 Joined images . 7
2.11 Programming Fred . 8
2.12 Main window Fred . 8
2.13 Scale Fred . 9
2.14 Browsing Jim . 9
2.15 Two more regions . 9
2.16 Joining two images with Join . 10

3.1 Recommended video preference settings . 13

4.2 The display control bar menu . 17
4.1 The display control bar . 18
4.4 Open dialog . 18
4.3 The paint bar . 19
4.5 Save dialog . 19
4.6 nip2’s main image processing window . 19
4.7 Components of a workspace row . 21

6.1 How Fred.def will look . 44
6.2 How Wombat find item will look . 44
6.3 How Wombat item will look . 44
6.4 Components of a workspace row . 44

v

vi

List of Tables

2.1 nip2 shortcuts for the image view window . 4

5.1 nip2 colourspaces . 26

6.1 nip2 built in functions . 33
6.2 nip2 operators in order of increasing precedence . 35
6.3 Functions in the standard list-processing toolkit . 39
6.4 Useful utility functions — see the source for details . 41
6.5 nip2 built in graphic classes . 46

vii

viii

Chapter 1

Getting started

nip2 is a user interface for the VIPS image processing
library. It is designed to be fast, even when working
with very large images, and to be easy to extend.

This guide is split into quite a few chapters:

• If you want to use nip2 to assemble infrared mo-
saics, you should read Chapter 3 on page 11. The
middle section in the tutorial (see §2.2 on page 6)
does IR mosaics very quickly.

• If you want to use nip2 for general image pro-
cessing, work through Chapter 2 on page 3.

• If you have specific questions about some part
of nip2’s user-interface, look at Chapter 4 on
page 17.

• If you’re really hardcore, take a look at Chapter 6
on page 31, which covers programming.

• If you want to know more about VIPS, the image
processing package underlying nip2, try the VIPS
Manual.

If nip2 has installed correctly you should see some-
thing like Figure 1.1 when it starts up.

Figure 1.1: nip2 as it starts up

1

CHAPTER 1. GETTING STARTED nip2 Manual

2 November 2009

Chapter 2

Tutorial

This chapter runs very quickly through how to use
nip2’s user-interface. See Chapter 4 on page 17 if you
want more details on how the different bits work.

2.1 Quick interface tour

Start up nip2. You should see something like Fig-
ure 1.1 on page 1 (the exact look might be different on
your system).

The menus at the top of the window are very ordi-
nary, except for the Toolkits menu which contains
all of the image processing operations. The green thing
is the current column (the thing that new objects will get
added to). Click on the 25 GB free text and it tog-
gles between showing space free on your disc and space
free for calculations.

Click on File / Open to get a file dialog and load up
an image. nip2 can load most image formats, try it and
see. Check the Pin up box to have the dialog remain
after you press OK. Click on Show thumbnails and
nip2 will try to display thumbnail images for all the
files in the directory. You can also drag files from the
desktop or from your file manager.

After you’ve loaded an image, nip2 should look like
Figure 2.1. Double click on the thumbnail to open an
image view window. Alternatively, select Edit from
the right-button menu on the thumbnail. See Figure 2.2.

As well as the standard keymappings, nip2 has extra
shortcuts for navigating images, see Table 2.1 on page 4.
Use the View / Toolbar menu to turn on other fea-
tures. You can have a status bar (shows image proper-
ties, mouse position and pixel value), a display control
bar (lets you change scale and offset for display pixels,
click on the arrow on the left for a useful extra menu), a
paint bar and some rulers.

Figure 2.1: After loading an image

Figure 2.2: Image view window

3

CHAPTER 2. TUTORIAL nip2 Manual

Keys in image display widget Action
i, + Zoom in on mouse pointer
o, - Zoom out
Cursor up/down/left/right Scroll a small amount in direction
Shift and cursor up/down/left/right Scroll a screenful in direction
Ctrl and cursor up/down/left/right Scroll to edge of image
Middle mouse drag Pan image
Mouse wheel Scroll up/down
Shift and mouse wheel Scroll left/right
Ctrl and mouse wheel Zoom in/out
0 (zero key) Zoom out to fit image to window
1, 2, 4, 8 Set magnification to 1, 2, 4 or 8
Ctrl and 2, 4, 8 Set zoom out factor to 2, 4 or 8

Table 2.1: nip2 shortcuts for the image view window

Figure 2.3: Image view window with marked regions

You can mark things on an image. Hold down Ctrl
and drag down and right with the left mouse button to
mark a region. Ctrl-left-click to mark a point. Drag
up and left to mark an arrow (two points connected by
a line). Drag from the rulers to mark guides. Right-
click on a label to get a menu which you can use to
remove or edit one of these things. Left drag on a la-
bel to move the things around, left-drag on the edges or
corners to resize. Figure 2.3 shows the same image with
stuff marked on it.

Clean up any messing about and leave two regions on
your image. The main window should now look some-
thing like Figure 2.4.

There are three rows visible here, A1, A2 and A3.
Each row has (from left to right) a pair of up/down
arrows (these indicate that the row contains sub-rows:
click on the down arrow several times to open the row

Figure 2.4: Main window, two regions marked

up and see inside), the name button (left-click to select,
Shift-left-click to extend-select, Ctrl-left-click to toggle
select, click on the workspace background to unselect
everything, left-drag on the name button to reorder items
within the column) and the thumbnail image.

Left-click on the name button of one of these images
to select it, and then click on Toolkits / Image /
Transform / Rotate / Free (alternatively, if noth-
ing is selected when you click on one of the toolkit
menus, nip2 will apply the operation to the bottom
object in the current column). A new row will appear
representing the rotation operation. Drag the slider to
rotate the image (or type an angle in degrees into the
box to the left of the slider and press Return). Pick an

4 November 2009

nip2 Manual CHAPTER 2. TUTORIAL

Figure 2.5: Using Rotate / Free

Figure 2.6: Using Join / Left to Right

interpolation type from the option menu and zoom in on
some pixels to check the result. See Figure 2.5.

The same thing works for image processing opera-
tions that take two arguments. Left-click on one of your
original regions, Ctrl-left-click on the rotated image (the
box at the left of the main window status bar says what’s
selected and in what order), and click on Toolkits /
Image / Join / Left to Right. A new row ap-
pears representing the join operation.

Click on Background Colour, type in 128 and
press Return. Drag the shim slider to 50 (or type 50
into the box just to the left of the slider and press Re-
turn). See Figure 2.6.

The Toolkits menu is large and can be slow and

Figure 2.7: The toolkit browser

annoying to find things in, so nip2 has several short-
cuts. First, you can tear-off menus by clicking on the
dotted line at the top. If you’re going to be using one of
the sub-menus repeatedly this can save a lot of clicking.
Next, you can set keyboard shortcuts for menu items by
moving the mouse pointer over the item and pressing
the key combination you want to set.

Some systems won’t let you edit menu shortcuts by
default. For example, on GNOME, you need to en-
able this in System / Preferences / Menus &
Toolbars.

Finally, there is a toolkit browser: this shows the
same set of items, but in an easier-to-browse way. Click
on View / Toolkit Browser and the browse side-
panel will appear, see Figure 2.7. It shows all of the
items as a single long list. Type into the search box at
the top to only show items which match. Double-click
(or press Return) on an item to activate it. Scroll to the
right to see what arguments the item needs and what
menu it appears in.

The box at the bottom of each column is for entering
new expressions. You can type stuff here, and nip2
will make a new row for each item you enter. Try typ-
ing 2 + 2 and pressing Return. The syntax is (almost,
with a few small differences) the same as the C pro-
gramming language. See §6.6 on page 34 for a list of
the differences. Try multiplying the joined images by
a small amount (eg. type something like A5 * 1.2
and press Return). Normally nip2 will pick names for
new objects for you (like A1), but you can set a name
yourself if you like. Try entering fred = 12.

November 2009 5

CHAPTER 2. TUTORIAL nip2 Manual

Click the down button once on your brightened image
and left-click on the area just below the thumbnail. You
should see the stuff you typed to make that row. You
can edit it to be anything else, press Return and nip2
will recalculate. Try going back to your original image
(the one you loaded from a file), open an image view
window, and try dragging one of the regions. You can
change any of the sliders in the rotate or the join rows
as well.

You can also edit the insides of objects. Click the
down button next to one of your regions until the width
and height rows appear, click on width and type
height * 2. Now open the image window the re-
gion is defined on and try to resize it: you’ll find that
the width of the region is fixed, but that if you change
the height, the width changes with it. This is a very gen-
eral property of classes in nip2: you can use it to join
objects together in complex ways, and to modify the be-
haviour of interactive objects.

Right click on a column title bar to get a useful menu.
Click on File / New / Column make another col-
umn (handy for organising a workspace). If you drag
from an image thumbnail on to the workspace back-
ground, nip2 will make a new column for you. You
can drop thumbnails on to other thumbnails to make
links. If nip2 falls over (I do hope it doesn’t), you
can usually get your work back by restarting nip2
and clicking on File / Search for Workspace
Backups. There are a lot of preferences (perhaps too
many), see Appendix A on page 49.

There is a lot of stuff in the Toolkits menus, but
they do almost all have tooltips. If you let your mouse
hover over a menu item for a moment you should get
some helpful text. The toolkit menu is organised by ob-
ject type. If you want to do something to a matrix, look
in the Toolkits / Matrix menu. The exception is
Toolkits / Tasks which repeats many of the regular
toolkit items, but groups them by typical tasks instead.

Operations can work on groups as well as on single
images, so you can batch things up. If you save a group
of images, nip2 will number each image sequentially
for you. You can use Edit / Duplicate to make
copies of objects. If you select lots of objects and du-
plicate them, nip2 will (fairly intelligently) rename ev-
erything for you so it all still works.

Figure 2.8: Loading the sample images

2.2 nip2 for reflectogram mosaics

This section quickly builds an infrared reflectogram mo-
saic using the sample images that come with nip2. See
Chapter 3 on page 11 for detailed coverage.

Click on File / Open Examples. You should see
a directory called 1 point mosaic. Doubleclick and
you’ll see a file called 1pt mosaic.ws. Doubleclick
that and you’ll load the workspace for this example.

If you’d rather make the workspace yourself, click on
the file type filter and select All files. A set of 8
images should appear. Click on the first file, shift-click
on the last, and click Open. See Figure 2.8.

The images have been named to match their positions
in the mosaic, so for example cd2.1.jpg is the first
image in row two. Open up viewing windows for the
first two images by double clicking on the thumbnails.
Move the two opened images viewers so that they are
side by side. Adjust the zoom (using the i and o keys)
and the pan (by dragging with the middle mouse button)
so that the overlap area is visible in both images.

Mark a tie-point on each image by Ctrl-left-clicking
on a feature you can see in both images, see Figure 2.9
on page 7. Move a point after you’ve marked it by drag-
ging on the label. You don’t need to be exact: nip2 just
uses the point you select as the start point for a search.
It can cope with misses of up to about 10 pixels. To
mosaic the two images together, click on Toolkits /
Tasks / Mosaic / One Point / Left to Right.
See Figure 2.10 on page 7.

Picking items deep in the toolkit menu is fiddly, so

6 November 2009

nip2 Manual CHAPTER 2. TUTORIAL

Figure 2.9: Ready to join

Figure 2.10: Joined images

nip2 has several shortcuts. First, you can tear off any
toolkit menu by clicking on the dotted line at the top.
Secondly, you can assign any keyboard accelerator to
any menu item. Navigate to the menu item and while
it is selected, press the key combination you want to
use as a shortcut (for example, Ctrl-L might be good for
Mosaic / One Point / Left to Right). Now
whenever you press Ctrl-L with the keyboard focus in
the main window, you will do a left-right mosaic join.
Finally, you can use the toolkit browser to display a se-
lection of the tools in a pane on the right-hand side of the
main window. Click on View / Browse Toolkits,
then type “mosaic” into the search box at the top. The
toolkit browser will display all items related to mosaic-
ing.

Some systems won’t let you edit menu shortcuts by
default. For example, on GNOME, you need to en-
able this in System / Preferences / Menus &
Toolbars.

Join the rest of the pairs of sample images together
left-right. Figure ?? on page ?? shows how they should
fit together. Once you have made all the rows, join the
rows together in turn to make the complete image using
Mosaic / One Point / Top to Bottom.

When you’ve built the whole thing you’ll see that
there are differences in brightness between the tiles that
make up your composite image. You can fix most prob-
lems like this automatically by selecting your final mo-
saiced image and clicking on Mosaic / Balance.
This operation takes your mosaic apart, examines the
overlap areas for differences in brightness, calculates a
set of adjustment factors to minimise these differences,
and then rebuilds the mosaic.

There can be some problems left even after mosaic
balance. Use Mosaic / Tilt Brightness to re-
move any left-right or up-down graduations in bright-
ness.

Save your mosaic workspace for future reference by
clicking on File / Save Workspace. To save just
the mosaiced image, right click on the thumbnail and
select Save As.

2.3 nip2 for nerds

This section sprints through a bit of nip2 program-
ming, see §6 on page 31 for full details and a more for-
mal definition of the language.

The insides of nip2 are built with nip2’s own pro-

November 2009 7

CHAPTER 2. TUTORIAL nip2 Manual

Figure 2.11: Programming Fred

gramming language. It’s a pure lazy functional lan-
guage with classes. It’s C’s expression syntax (more or
less) plus approximately Miranda/Haskell function syn-
tax, plus some basic class stuff. nip2’s main window
is a class browser for this programming language.

Click on Toolkits / Edit Toolkits in nip2’s
main window to pop up the programming window (see
§4.4 on page 22 for details on all the bits in the window),
then in the edit area there type:

// add two things

Fred a b = class {
sum = a + b;

}

This defines a class called Fred whose constructor
takes two arguments, a and b. There’s one member,
called sum, which is a and b added together.

In the program window, click File / Process.
This makes nip2 read what you typed, parse it, com-
pile it and update itself. The program window should
now look like Figure 2.11.

If you look back at the main nip2 window, a
new menu will have appeared under Toolkits called
untitled. If you click on that, there will be a menu
item called Fred. Let your mouse linger, and you’ll see
a tooltip too.

In the main window, type Fred 2 3 into the box
at the bottom of the current column. Press Return and
nip2 will make a Fred for you. Click on the down ar-
row to the left of your new Fred once to see the mem-
bers of Fred (just sum in this case), click again to see
the class parameters too. The main window should look
like Figure 2.12.

Figure 2.12: Main window Fred

Click to the right of b, type in a new value and press
Return. The sum member should update. nip2 keeps
track of dependencies between rows, but it also tracks
dependencies inside rows, both ones that come from the
class, and ones created by any edits you do to the class
instance after creating it. You won’t see it in a simple
example, but nip2 also discovers and tracks dependen-
cies which can arise at run time. Click on the text just
to the right of the b button again, type a and press Re-
turn. Now edit a: press Return and both b and sum will
update.

You can use Fred to add any two things together.
Click on Toolkits / Widgets / Scale to make a
scale widget, press Ctrl-U (the keyboard shortcut for
Edit / Duplicate) to duplicate it, and finally click
on Toolkits / untitled / Fred. Open up the new
Fred and try dragging some of the scales around. The
main window will look like Figure 2.13 on page 9.

The scales are classes too (instances of Scale). You
can open them up and do strange things with them as
well. Open up one of the scales you made (eg. A2 in
Figure 2.13 on page 9) and change the from parameter
to be A3.value. Now try dragging the sliders again.

Try dragging the sum slider. Now go back and drag
one of the original sliders. You’ll see that sum no longer
updates, it’s stuck at the last position you dragged it to.
This is because there are now two things affecting the
value of sum: the underlying code (the a + b inside
Fred), and the position you dragged the slider repre-
senting sum to. nip2 has the rule that graphical ed-
its (dragging the slider) override code. To make sum

8 November 2009

nip2 Manual CHAPTER 2. TUTORIAL

Figure 2.13: Scale Fred

update again, right click on the sum button and select
Reset from the pop up menu. Now drag one of the
input sliders again, and sum will start updating once
more.

Classes can inherit from other classes. Go back to the
program window, click on File / New / Tool to clear
the edit window, and type:

// multiply two things

Jim a b = class Fred a b {
product = a * b;

}

This defines a class called Jim which inherits from
Fred. Click File / Process, then back in the main
window, type Jim 4 5 into the bottom of the col-
umn. Click down once to expose the members (just
product), click again to expose the parameters as well
(a and b), and click a third time to expose the super-
class member (which should be an instance of Fred).
You can also open up the supermember and see inside
the Fred that this Jim is using as its superclass. See
Figure 2.14.
nip2 has about 20 different graphical classes like

Scale. Whenever a row takes a new value, nip2
checks to see if that value is an instance of one of
these special classes, and if it is, it will add a graph-
ical element to the row display which represents that
class’s value. It builds the graphical part by looking
inside the class for certain members (for example, the
scale graphic looks for members called from, to and

Figure 2.14: Browsing Jim

Figure 2.15: Two more regions

value). When you change the graphic (maybe by
dragging the scale), nip2 rebuilds the class by look-
ing inside for a edit member (eg. Scale edit) or if
that’s not defined, a constructor member (eg. Scale).

You can make your own graphic widgets by subclass-
ing nip2’s built-in ones. By selectively overriding de-
fault constructors and adding edit members, you can
control how your new widget will behave in expres-
sions, and how it will behave if it’s edited graphically.

Make a new column, load up an image (use File
/ Open), open an image viewer (double-click on the
thumbnail), drag out two regions on it (hold down Ctrl
and the left mouse button and drag down and right).
Your main window should look like Figure 2.15.

November 2009 9

CHAPTER 2. TUTORIAL nip2 Manual

Figure 2.16: Joining two images with Join

im insert is a VIPS operation that puts one im-
age inside another at an (x, y) position. VIPS opera-
tions work on VIPS images. The value member of an
Image or Region is the VIPS image that underlies the
nip2 row.

You can use im insert to make a thing to join two
images together. Back in the program window, click on
File / New / Tool and enter:

// join two images left-right

Join a b = class Image value {
shim = Scale "Spacing" 0 1000 0;
value = im_insert a.value b.value

(a.width + shim.value) 0;
}

Click File / Process. This defines a class Join
which subclasses the Image graphic.

Now select your two regions (click on the first one,
shift-click on the second) and click on Toolkits /
untitled / Join. A new Join row will appear.
Open it up and drag the slider to set the spacing between
the two joined images. Go back to the image viewer for
the image file you loaded and try dragging one of the re-
gions. Figure 2.16 shows this class in action. The thing
in Toolkits / Image / Join / Left to Right is
just a fancier version of this.

You can change how the graphic widgets behave by
subclassing them. Try:

Scale_int c f t v = class

scope.Scale c f t ((int) v) {
Scale = Scale_int;

}

This defines a new scale class called Scale int
which can only take integer values. The Scale =
Scale int; line is Scale int overriding Scale’s
constructor, so that a Scale int stays a Scale int
when you drag. Because there’s a local called Scale,
Scale int needs to use scope.Scale to refer to
the superclass.

Here’s a version of Mark which can only be dragged
in a circle. You pass it an image to display on, an xy
centre position, a radius and a start angle.

Mark_circle image x y r a = class
scope.Mark image _x’ _y’ {
// get rect cods for our point
_pos = (x, y) + rectangular (r, a);
_x’ = re _pos;
_y’ = im _pos;

Mark i l t
= this.Mark_circle i x y r a’

{
// vector from centre of
// circle to new position
u = (l, t) - (x, y);

// angle of vector
a’ = im (polar u);

}
}

10 November 2009

Chapter 3

Assembling infrared mosaics

VIPS has a package of functions designed to help join
many small images together to make a single large im-
age. They were originally designed to assemble infrared
reflectograms but are general enough to be useful for
other sorts of image as well, such as X-rays.

This chapter first introduces the mechanics of infrared
imaging then explains how to use nip2 to assemble the
images you grab. Finally, it suggests some printing tech-
niques.

3.1 Infrared imaging

Most museums use tube cameras (usually called Vidi-
cons) for infrared imaging. Although they are relatively
cheap they are not very stable and they suffer from
(sometimes quite severe) geometric distortions. More
modern solid-state cameras are still expensive but are
becoming more widely used because of their greater sta-
bility. This guide assumes you are using a tube camera
but almost all of it applies to solid-state cameras as well.

Whatever your camera there are three main sources
of error which have to be addressed in order to be able
to make successful mosaics:

1. Tube cameras suffer very badly from distortions in
the image, usually either ‘pin-cushioning’ or ‘bar-
relling’. These distortions result in alignment er-
rors when sub-images are joined together.

2. The sensitivity of the tube varies across its sur-
face, causing some parts of each sub-image to be
brighter than others. This is made worse by un-
avoidable variations in illumination. When a lot
of such images are joined together the result is a
‘brick wall’ effect.

3. The sensitivity of the tube also varies between sub-
images, partly as the overall lightness in the field
of view changes, and also because the electronics
in the camera change as the camera heats up. This
leads to a patchy, unbalanced mosaic.

The first two problems will be different in each Vidi-
con and will change each time a tube is replaced. All
three problems need to be addressed to create success-
ful infrared reflectogram mosaics.

3.1.1 Setting up your system
Mechanical set-up

It is vital that the optical axis of the Vidicon is at right-
angles to the picture plane and that, whether it is the
Vidicon or the painting that moves during image cap-
ture, it remains perpendicular. Obviously, with a seri-
ously warped panel, this may not be possible. The light-
ing should be carefully adjusted so that the area of inter-
est is lit as evenly as possible. If you can, arrange for the
lights to remain stationary with respect to the camera.

An easy way to test camera alignment is to image a
piece of graph paper, move the camera (either left-right
or up-down) by 90% of the field of view, and see how
features in the overlap area move. First rotate the centre
around the optical axis to get the centre line of the im-
ages lined up. Next check the corners and adjust camera
pitch and yaw.

Video set-up

On Linux, you can capture video directly into nip2
provided that your capture card is compatible with
v4l. You may need to adjust the nip2 video settings.
These settings can be found under the headings Video

11

CHAPTER 3. ASSEMBLING INFRARED MOSAICS nip2 Manual

for linux and General video capture in the
Preferences window, which can be accessed by se-
lecting Edit / Preferences from the main nip2
window. The default settings, see Figure 3.1 on page 13,
are for the Hauppauge PCI capture card and should be
changed as required.

Once you have set up your card, select Tasks /
Capture / Capture Video Frame to create a
new video object, which will appear as a still image
in your current selected column. The captured image
can be updated by opening the image in a viewing win-
dow and then pressing Ctrl-C (a shortcut for File /
Recalculate Image).

You can create more than one video object: this can
help you to get the overlaps right if you have two open
at once (one showing the previous grab) when you are
moving the camera around.

Setting the crop and aspect

While it is possible to correct geometric distortions af-
ter the image is captured, it is difficult to do the nec-
essary modelling accurately and reliably. Instead, we
suggest the grabbed images should simply be cropped,
since the most severe distortion affects the perimeter of
each video image.

To determine the area to crop, set up the Vidicon as it
would be set to image a painting and capture an image of
a rectangular grid — a piece of graph paper works well
as a target. Before capturing the grid, check the current
video crop settings in the Preferences window and
ensure that the crop is set at maximum: left 0, top 0,
width 768, height 576 (these are the dimensions for a
PAL signal, they may be different on your system). Also
set the Aspect ratio line to 1.

Create a new video object and look for the largest
rectangle with little distortion (no more than a few pix-
els). If you create a region on the video image (by hold-
ing down the Ctrl key and dragging down and right with
the left mouse button, see §?? on page ??) you can com-
pare the straight edges of the region against the distorted
lines of the grid. You can then expand and contract the
region until you decide on the optimum area. The set-
tings you need for the crop box can be taken from the
values contained within the region object, which can be
viewed by left-clicking several times on the down arrow
to the left of the region object name.

Finally, you can set an aspect ratio: nip2 will auto-
matically stretch video frames vertically by this factor.

You can measure the aspect ratio of your capture card
by taking a picture of something you know to be square
and dividing the width in pixels by the height in pixels.

Move back to the Preferences window and enter
the crop values in the General video capture
section. Next time you create a new video object, you
should find that it is cropped to the appropriate area. The
settings you enter in the Preferences / window will
be saved and automatically loaded again next time you
start nip2. See appendix A.

Choosing the usable area of the image is a matter of
compromise — the smaller the area, the more images
are required to build a mosaic of a particular painting. If
the area chosen is too large then the amount of distortion
can cause serious errors in the final mosaic.

It’s possible to use the VIPS rubber sheet plug in to
detect and correct geometric distortion in your images
automatically. This lets you use the full area of the sen-
sor. It is a bit fiddly, but see the rubber sheet documen-
tation if you are determined.

3.1.2 Capturing the data
Setting the gain and offset

Once everything is correctly set up, position the paint-
ing in front of the camera and experiment with the gain
and offset settings on the Vidicon to achieve the opti-
mum infrared image on the computer screen. Note that
the appearance of the image on the computer will nor-
mally be different to its appearance on the video monitor
connected directly to the camera.

Repeat this process at different points across the
whole area to be captured. Although it is not always
possible, the aim is to find a setting that does not need
altering much during the capture of the data. This seems
to lead to more successful mosaics.

Grey card correction

To counteract the problem of uneven sensitivity across
the target area of the tube, it is necessary to capture an
image of a piece of grey card. This grey card image is
then used to correct all subsequent images. The card
should be a flat, even grey, of around 50% reflectance.
The Vidicon and lighting positions with respect to the
painting should not be changed between the imaging of
the grey card and the capturing of the mosaic. A grey
card can be captured at any time, but it is good practice
to start with one — you may forget later.

12 November 2009

nip2 Manual CHAPTER 3. ASSEMBLING INFRARED MOSAICS

Figure 3.1: Recommended video preference settings

If your mosaic will take several hours to capture, you
may wish to grab extra grey cards, since the sensitivity
of the tube can change as it warms up. Be sure to note
which data images correspond to which grey cards!

In association with the first grey card, it is a good
idea to grab an image of your grid to record the scale at
which the data images are being made.

Image capture

Open a video window, Tasks / Capture / Capture
Video Frame, and when it shows the desired area,
save the file. The choice of file name is a question of
personal preference. We find it helpful to use a format
that indicates where in the mosaic the data comes from
— for example, dat3.5.v for the fifth image in row
three.

It is helpful to be able to see the previous image to
ensure that there is sufficient overlap. To achieve this, a
second video window can be opened and placed along-
side and the images grabbed into alternate windows.

Capture tips

• Make a new directory for each painting, and keep
all of the image files for that painting (including a
grey card and a grid) in that directory.

• VIPS can join up images in any layout, but you will
get much less confused when you assemble your
images if you stick to a regular grid. This can be
difficult — a good compromise is to keep one axis
fixed and grab in rows (or columns).

• You can help to reduce mosaicing errors later if you
keep your rows (or columns) as short as possible.
So if the painting is in landscape format, grab in
columns (or turn the painting on its side and grab
in rows); if the painting is portrait, grab in rows (or
turn the painting on its side and grab in columns).

• The semi-automatic mosaic functions (see §3.2 on
page 14) need a minimum overlap between the sub-
images they join of around 20 pixels. For safety,
you should aim for a larger overlap than this: we
recommend an overlap of 60 pixels (around 20mm,
usually).

• If the overlap area is featureless, it is worth iden-
tifying a good tie-point and ensuring it is visible
in both images, even if this means increasing the
overlap for one of the joins.

3.1.3 Correcting illumination

Before the mosaic can be assembled, the data images
need to be corrected for non-uniformity of illumina-
tion using the grey card image. This function can be
performed within nip2 or directly using a predefined
VIPS command-line tool.

3.1.4 Correcting with the command-line
tool

First, close nip2 and open a command line window,
(xterm, mingw, etc). Move to the directory contain-
ing your image files with cd. For example, if you have
made a directory called raphael inside your home di-
rectory, type:

prompt% cd raphael

The program you need to use is called
light correct. You need to give it the name
of the grey-card image and the names of all of the
image files you want it to correct with that gray card.
Suppose you have saved your gray card image as
grey.v, and your painting image files are called
dat1.1.v and dat1.2.v. You would then enter:

prompt% light_correct grey.v dat1.1.v dat1.2.v

November 2009 13

CHAPTER 3. ASSEMBLING INFRARED MOSAICS nip2 Manual

The program will run and print messages explaining
its progress. It creates a new set of corrected image files,
with the same names as before, but prefixed with ic .
In this example, it would create two new images files
called ic dat1.1.v and ic dat1.2.v.

If there are a lot of image files to correct this could
mean a lot of typing. Fortunately, you can use wildcard
characters to abbreviate lists of file names. The example
above can be abbreviated to:

prompt% light_correct grey.v dat*.v

The dat*.v means ‘any filename which starts dat
and ends with .v’.

You can use this technique to correct different parts
of your mosaic with different grey cards. If you have
a file called grey1.v for the first row in your mosaic,
and a file called grey2.v for the second, you could do
the correction in two parts:

prompt% light_correct grey1.v dat1.*.v \\
prompt% light_correct grey2.v dat2.*.v

3.1.5 Correcting within nip2
The function within nip2 used to preform this correc-
tion is Tasks / Capture / Flatfield. A set of
images can be corrected at the same time by joining
them together in a Group. A group can be produced
by selecting all of the required images and then using
the Edit / Group command.

Load all of your images into nip2, and group all the
image except the grey image. Select your grey image
and then your new group and then run the Tasks /
Capture / Flatfield function. This will produce
you a group of corrected images. Right-click on this
new group and select Save As from the menu. In the
save window type in a name, for example fred 01.v
and then hit the save button. All of the images in your
group will then be saved as fred 01.v, fred 02.v,
fred 03.v . . . fred n.v.

If you want to keep row numbers in your file names,
(see §3.1.2 on page 13), you will need to correct
your images one row at a time, saving each row as
fred01 01.v, fred02 01.v, etc.

3.2 Assembling the mosaic
The tutorial has a section on mosaic assembly with
nip2: see §2.2 on page 6.

Mosaic assembly is normally painless. There are a
few factors you should bear in mind when you are de-
ciding how to assemble an image (particularly a large
image):

• You can open up a mosaic join and change a few
options, such as the blend width. If you want
to change the defaults for a whole workspace,
change the Mosaic defaults options in your
Preferences.

• If two images just won’t join correctly, try us-
ing Tasks / Mosaic / One Point / Manual
Left to Right instead. These functions op-
erate in the same way as the usual mosaic func-
tions, but do not do a search. This is useful when
the overlap is too small for the search to work cor-
rectly, or when the overlap area is very smooth and
contains too few features for the search to find the
exact overlap for you.

• nip2 does not do sub-pixel interpolation. As a re-
sult, each join will on average cause a positioning
error of about 0.5 pixels, even if your input im-
ages contain no geometric distortion. If there are
distortions in your input images (there usually are
distortions in infrared images), then errors can be
as much as 1–2 pixels per join. These errors accu-
mulate as the number of images you join becomes
larger.

If you join a strip of 10 images together with
Tasks / Mosaic / One Point / Left to
Right, on average you can expect a total error of
about 5 pixels. If you join two strips like this to-
gether top-bottom, you can therefore expect a mis-
match of about 2.5 pixels at each end of the join.

You can minimise the effect of these errors if you
assemble your images differently. Suppose you
have a 10 by 10 mosaic to build. Instead of mak-
ing and joining 10 strips of 10 images each, make
four 5 by 5 sub-mosaics (one for each quadrant)
and then join these four quadrants together. The
errors will now be more evenly spread over the im-
age and therefore will be less visible.

• Some operating systems limit the number of files a
program can have open at once: this in turn limits
the size of the mosaics you can assemble in one go.
If you are having problems putting together very
large mosaics, try building your image in sections

14 November 2009

nip2 Manual CHAPTER 3. ASSEMBLING INFRARED MOSAICS

(top, middle and bottom, perhaps), and later
load up and join these larger pieces.

3.3 Balancing the mosaic
Like assembly, mosaic balancing is normally automatic
and painless. You may sometimes have problems if the
image is very large, or needs dramatic corrections:

• Each VIPS image file has an associated history,
recording the operations on that image since it was
loaded from a file. You can view an image’s his-
tory by clicking on View / Image header in an
image view window.

The automatic balancer uses the history to work
out how you built your mosaic. The balancer
knows about left-right and top-bottom joins, but
nothing else! If the history has other stuff recorded
in there, you’ll see unhelpful error messages
like unable to open tmp/xxx.v, or more
than one root.

If you need to perform corrections to any of your
sub-images, do them, save the image, load it again,
and then build the mosaic. This will make sure the
history of the image you are trying to balance only
contains mosaic operations.

• On some systems the balancer can run out of mem-
ory or out of file descriptors on very large mosaics.
If your mosaic is made up of more than a few hun-
dred images, and you are having balancing prob-
lems you may have hit one of these limits.

The solution (as with mosaic assembly) is to as-
semble and balance your mosaic in smaller pieces.

• If your grey-card correction is not accurate, you
will find that the balancer will magnify any prob-
lems you have.

Suppose your lighting and camera set-up always
produces images which are brighter on the right
than the left, and suppose, due to some problem
with your grey-card correction, this effect is not
completely removed. You will find that when you
balance a mosaic, the small differences between
left and right edges of your sub-images will have
been smoothed out, but they will have caused a
large difference in brightness between the extreme
left edge of your final image and the extreme right.

nip2 includes several functions which can help
to fix this problem, the most commonly used be-
ing: Tasks / Mosaic / Tilt Brightness /
Left to Right and Tasks / Mosaic / Tilt
Brightness / Top to Bottom.

3.4 Other nip2 features useful for
reflectograms

You can use nip2’s general image processing facil-
ities to play around with reflectogram mosaics. You
can make false-colour images of your reflectograms,
blend them with visible images or X-rays, search them
for edges, and so on see the registering and
overlays and blending examples for ideas.

There are also some first order mosaic func-
tions: Tasks / Mosaic / Two Points / Left to
Right and Tasks / Mosaic / Two Points / Top
to Bottom. These functions automatically rotate and
scale the right-hand image in a join. They are useful for
assembling X-ray mosaics, and for fixing very difficult
joins in reflectogram images. These functions work the
same way as the One Point functions except that you
will need to define two tie-points on each image.

You can mosaic images of any numeric type: 16-bit
integer images are handy for mosaicing X-ray images,
for example.

3.5 Printing

Once you have assembled a good reflectogram, you will
want to print it, or to use it in other computer programs.
The best way to do this is to save the final image in TIFF
or JPEG format, and then load it into the new applica-
tion — see §4.2 on page 18.

There are a couple of points to bear in mind: first,
like any image, reflectograms look best on paper if
you sharpen them up a little first. Click on Filter
/ Convolution / Custom Convolution, right
click on the matrix button, select Replace from
file. Double Click on the second or lower data
directory listed in the left hand column to enter
nip2’s main data directory. Change the Image type
select / option to All FIles (*) and then select
and load rachel.con. This will usually produce an
approprioatly sharpened reflectogram.

November 2009 15

CHAPTER 3. ASSEMBLING INFRARED MOSAICS nip2 Manual

Secondly, you will need to try several prints with dif-
ferent contrasts and brightnesses to get a good match be-
tween the paper and the screen, try Image / Levels /
Linear. You may even want to fiddle with the gamma,
try Image / Levels / Power.

Finally, you may not need a full resolution image. For
almost all printers there’s no point going over about 300
dpi (dots per inch), or about 3000 by 2000 pixels for
an A4 page. To reduce the size of an image, use one
of the functions listed under Resize / Transform /
Resize.

16 November 2009

Chapter 4

Reference

This chapter is supposed to be a user-interface refer-
ence. Chapter 5 on page 25 describes the items in the
Toolkits menu and Chapter 6 on page 31 is the pro-
gramming language reference. Chapter 2 on page 3 has
a tutorial-style introduction.

4.1 Image view window

Figure 2.2 on page 3 shows nip2’s image view window
with all the toolbars turned on.

If you press i (or +) with the keyboard focus on the
image you will zoom in on the pixel your mouse pointer
is over. Press o (or -) to zoom out again, or press the
number keys 1, 2, 4 and 8 to jump straight to a partic-
ular magnification. If you hold down the Ctrl key while
pressing these numbers, nip2 will zoom out by that
amount. If you press 0 (the number zero), then nip2
will pick a magnification or reduction which fits the im-
age to the size of the window.

When the image is too large for the window, you can
use the scroll bars to move about the image. With the
keyboard focus on the image the cursor keys left, right,
up and down move a few pixels in each direction; hold
down Shift as well to move a screenful at a time; hold
down Ctrl as well to jump to the extreme edges of the
image.

You can also drag with the middle mouse button to
pan around the image. Use the mousewheel to pan up
and down, hold down Shift and the mousewheel to pan
left and right. Use Ctrl and the mousewheel to zoom in
and out.

Use the View menu to add extra elements to the win-
dow. You can turn the status bar on and off, and you can
add a display control bar, a paintbox and a set of rulers
to the window.

Figure 4.2: The display control bar menu

If you select View / Toolbar / Display
Control, nip2will add a bar to the top of the window
which you can use to change the contrast and brightness
of the image you are viewing. The left-hand slider and
text box set the gain for the image: each pixel is mul-
tiplied by this amount before display. The right-hand
slider and text box set the offset: each pixel has this
value added to it before display. This is useful for boost-
ing the brightness in dark areas of images.

If you click the left mouse button on the arrow to the
left of the display control bar, nip2 pops up a menu of
useful display functions — see Figure 4.2.
Scale searches the area of the image you are view-

ing for the darkest and brightest points and chooses set-
tings for the gain and offset sliders which will stretch
the image to use the full range of your screen. False
colour tries to make small differences in brightness
more visible by colour-coding them.

If Interpret is turned on (it is by default), then
nip2 will look at the Type field in the image header,
and use that as a hint when transforming the image to
a viewable form for you. This is usually the behaviour
you want. Reset moves the sliders back to the de-

17

CHAPTER 4. REFERENCE nip2 Manual

Figure 4.1: The display control bar

fault positions of 1.0 and 0.0. Set As Workspace
Default makes the current display bar settings the de-
fault for all new image windows in this workspace. Fi-
nally, Hide removes this display control bar.

If you select View / Toolbar / Rulers, nip2will
add rulers to the edges of the window which you can use
to measure numbers of pixels. If you left-drag from the
ruler, you can create a guide. Guides are useful for lin-
ing up other things in the view window, and also affect
paint box actions. A right-button menu on the rulers
lets you use a mm scale rather than a pixel scale, and
controls whether the Xoffset and Yoffset header
fields are used.

The File menu contains two useful items: select
Replace Image to change the image which is being
displayed in the window (you can also drag and drop
new images in). Select Save Image to save the image
you are viewing to a file. See §4.2 for details on nip2’s
load and save dialogs. The New menu is a no-mouse
route for creating regions, points, guides and arrows.

If you select View / Toolbar / Paint, nip2 adds
a paint bar to the top of the window. You can use the
paint bar to do simple edits to the image being dis-
played. See Figure 4.3 on page 19.

While the paint bar is very limited, it does have two
useful features. First, it can paint with any pixel value,
even complex. For example you can take the fourier
transform of an image and paint out the peaks. Sec-
ondly, it doesn’t operate on a memory copy of an image,
it operates directly on the file on disc. This means that
you can paint on images of any size, but it does make
the paint bar a bit dangerous.

Normally paint actions are live, that is, every time
you paint something all the objects which depend on the
thing you painted will recalculate. This can sometimes
cause annoying delays: there’s a preferences option to
turn off automatic recalculations for the paint bar.

The Undo and Redo buttons move forward and back
though paint actions. The Clear button wipes the
undo/redo history (useful if memory is getting low).
There’s an option in the preferences workspace which
controls the number of undo steps nip2 tracks.

You can mark regions on images by holding down

Figure 4.4: Open dialog

Ctrl and dragging down and right with the left mouse
button. You can move the region about by dragging on
the label with the left mouse button; you can resize it
by dragging with the left mouse button in the border;
you can get a useful context menu by right-clicking on
the label; and you can pop up a box which will let you
edit the region numerically by double-left-clicking on
the label.

If you drag up and left, you will make an arrow. If
you hold down Ctrl and just click the left mouse button,
you will make a point. If you drag from a horizontal or
vertical ruler, you’ll make a guide. Guides are useful for
lining up other things in the view window.

Use File / New to make regions, points, arrows and
guides without the mouse.

4.2 File select dialogs
On most platforms you can drag files from your file
manager directly to nip2’s main window. Alterna-
tively, if you select File / Open in the main window,
nip2will pop up a file dialog, see Figure 4.4. The open
dialog has the following extra features:

Pin up button Normally the file dialog closes after you
have opened something. If this item is checked, the
dialog will stay up instead — this is useful if you
want to load or save a series of objects.

18 November 2009

nip2 Manual CHAPTER 4. REFERENCE

Figure 4.3: The paint bar

Figure 4.5: Save dialog

Image type select Use this menu to select the type of
file you want nip2 to display. There’s a prefer-
ence option to set the default image format. The
VIPS file format is fast and accurate, but sadly not
very widely supported (joke). You can also load
and save images in TIFF, JPEG, PNG, HDR, CSV
and PBM/PGM/PPM formats. You can usually
load in many more formats, it depends how your
nip2 has been configured.

Show thumbnails Pressing this button pops up a win-
dow which shows thumbnail-sized images for all
the matching files in the current directory.

The save dialog is a little different, see Figure 4.5.
If pin up and increment are both selected, then af-

ter a save nip2 will attempt to add one to the se-
lected file name. For example, if you save a file called
fred001.v, after the save nip2 will put the name
fred002.v into the selected file name box. Again,
this is useful if you want to save a series of images.

4.3 Image processing window
Figure 4.6 show’s nip2’s main image processing win-
dow. The centre area is the workspace, the left-hand
area is a pane you can reveal to write custom defi-
nitions for this workspace (see View / Workspace
Definitions), and the right-hand pane is the toolkit
browser (see View / Toolkit Browser).

Drag with the middle mouse button to scroll the
workspace window. Drop a file on to the workspace

Figure 4.6: nip2’s main image processing window

background (from your file manager) to load that file. If
you right-click on the workspace background, a useful
menu will appear.

Workspace This area displays the objects (images,
numbers and so on) which are currently loaded into
nip2. The workspace is divided into columns of
objects which each behave rather like windows:
they can be moved around, folded away, loaded,
saved and deleted.

Current column One column is the current column.
This is the column to which all new objects are
added. Single-left-clicking on the title bar of a col-
umn makes that the current column. See §4.3.1 on
page 20.

File, Edit, View Use the File menu to create or save
workspaces, to open workspaces or load other ob-
jects into this workspace, to merge workspaces and
to search for workspace backups. Use the Edit
menu to select, group, delete and duplicate sets of
objects. Use View to show and hide elements of
the main window, and to set the object view mode.

Toolkits This menu contains all of the image pro-
cessing functions which are currently loaded into

November 2009 19

CHAPTER 4. REFERENCE nip2 Manual

nip2. They are generally grouped by object
type: all of the operations on matricies are under
Toolkits / Matrix, for example.

If you select one of these image processing opera-
tions, nip2 will apply that operation to the bottom
few items in the current column (however many are
necessary — two items for Math / Arithmetic
/ Add, for example), or alternatively, if you have
selected some objects explicitly, it will try to apply
the operation to the selected objects. See §4.3.3
on page 21. As you move the mouse pointer over
menu items nip2 tries to display some helpful in-
formation about the operation, including the num-
ber and type of arguments the operation expects.

Toolkit Browser This side panel shows all the image
processing operations again, but this time as a large
flat list you can easily browse. Type into the search
box at the top to filter operations by keyword. Dou-
bleclick on an item to activate it.

Workspace Definitions This side pane shows private
definitions for this workspace. Programs you write
here are loaded and saved with this workspace. See
the Programming chapter for details on nip2’s
programming language.

Free space This displays the amount of disc space you
have left in your temporary file area. See §A on
page 49 if you want to change the directory nip2
uses to store temporary files.

If you left-click on the label, it changes to display
the space nip2 has free internally for perform-
ing calculations. You can change this limit in the
Preferences workspace. Click again to switch
back to disc free.

If you have objects selected, this area changes to
show the names of the selected objects.

Status bar As you move the mouse pointer about the
window, this bar tries to display useful information
about the thing you are pointing at.

4.3.1 Columns
Columns are split into a number of areas:

Column name Each column has a name. You can pick
any name you like when you make a new column
with File / New / Column. There’s no way to

rename a column, unfortunately. Objects in the
column are named using the column name, plus a
number.

Column title bar Drag with the left mouse button held
down on the column title bar to move the column
around the workspace. Double-left-click on the ti-
tle bar to change the comment attached to the col-
umn. Hold down the right mouse button on the
column title bar to pop up a useful menu.

The items in the menu let you edit the caption, se-
lect all the objects in the column, make a new col-
umn which is a copy of this column, save the col-
umn to a file, convert the column into a menu item
(see §4.3.6 on page 22) and remove the whole col-
umn.

Column fold button Left-clicking on the fold button
folds the column away. Use this to hide columns
which you still need, but which you are not inter-
ested in just now.

Expression entry You can perform calculations by
typing expressions directly into this box. For ex-
ample, try entering the following expressions, and
pressing Return:

2 + 2
A1 + 120
"My cat likes\nlasagne"
fred = 12

The last example shows custom button name cre-
ation. Normaly nip2 will pick a name for you,
but you can chose your own.

4.3.2 Rows
A column holds a number of rows. Each row comes
in four main parts, not all of which are visible for all
row values. Rows which represent classes have a pair
or up/down arrows to the left of the row name button
which you can use to control which parts of the row are
visible.

Row name button Each row has a name. The name
is normally formed from the name of the current
column, plus a number.

If you double-left-click on the row name button,
nip2 will pop up a viewer or dialog box for the

20 November 2009

nip2 Manual CHAPTER 4. REFERENCE

Figure 4.7: Components of a workspace row

value of the row. If you left-click, nip2 will select
that row and deselect all other rows. If you click on
an empty space in the workspace, it will deselect
all rows. If you Ctrl-left-click, nip2 will toggle
selection of that row. If you select one row and then
Shift-left-click on another row in the same column
it will select the second row and all the rows in
between. If you drag with the left button, you can
change the order of rows in a column. Hold down
the right mouse button for a useful menu. If you let
the mouse linger over a button, a useful tooltip will
appear.

Graphic If the row’s value is a class, and if the class
is an instance of one of nip2’s graphic classes,
then nip2 will draw a graphic representation of
the row’s value. See §6.12.2 on page 44 for a more
detailed explanation.

Members If the row has a class for a value, then nip2
will draw a sub-column listing the class members.
Subcolumn members are in turn rows themselves.

Text Finally, the text part normally shows a text repre-
sentation of the row’s value. If you left-click on the
value, it changes to show the formula which gener-
ated that value. You can edit the formula and press
Return to change it.

Alternatively, selecting View / Show Formula
toggles between displaying values for objects and
displaying the formula.

Object name colours

nip2 changes the background colour of the row name
button to show the state of the row. If background
colours are not visible (perhaps your theme turns
them off), try turning on the Display LEDs in
workspace option in Preferences.

Green means the row is selected (click on the back-
ground to unselect), red indicates an error (right-click
on the row button ans select Recalculate to see the
full text of the error), brown indicates that the row value
is out of date and needs recalculating and the various
blues indicate parent and child relationships.

4.3.3 Applying operations to objects
There are three ways you can apply image processing
operations to objects in your workspace:

1. Select the object you want to apply the operation to
by single-left-clicking on the object name. When
you single-click, the object name will change
colour to show that it is selected, and nip2 will
display the name of the selected object at the left
end of the status bar (this is useful if the selected
object is scrolled off the edge of the window).

You can select additional objects with Ctrl-left-
click and Shift-left-click. This is necessary if you
want to use an image processing operation that
takes more than one argument.

Once you have selected the rows (sometimes you
need to select them in a certain order), click
on the processing operation you want from the
Toolkits menu.

2. If there are no objects selected when you click on
an image processing operation, nip2 uses the bot-
tom few items (as many as are needed by the oper-
ation) in the current column.

3. You can also type your formula directly into the
expresion entry line at the bottom of the selected
column. Chapter 6 on page 31 describes the syntax
in detail, but it’s approximately C.

4.3.4 Batch processing
If you select a number of rows and then click Edit /
Group, nip2 will group the rows together. Now if you
select the group and click on an item in the Toolkits
menu, nip2 will apply that operation to every item in
the group. You can group groups, and you can mix
grouped and non-grouped rows freely.

If you save a group, nip2 will write each item in the
group to a separate file, incrementing the filename each
time.

November 2009 21

CHAPTER 4. REFERENCE nip2 Manual

4.3.5 Error handling
If an object in your workspace has an error (for example,
if you are trying to join two images of different types),
then the object name button will turn red to show that
this object contains an error and the tooltip for the button
will show the error message.

4.3.6 Making menu items out of columns
If you make a column that does something useful, you
can make it into a menu item by following these steps:

1. Make your column look nice. Drag with the left
mouse button on the object name buttons to re-
order items in the column, and add comments to
explain what are the input fields and what are the
output. Double-click on the column title bar to add
a helpful title to the column.

Add a comment by typing your text (enclosed in
double quotes) into the line at the bottom of the
column. Left-drag the row to the right place.

2. Select Make Column Into Menu Item
from the column title-bar menu, see §4.3.1 on
page 20.

This will open up a new dialog box which you can
use to set a name for your new menu item and
the name of the top level menu the item should be
added to.

3. That’s it. You’ll be prompted to save your new
toolkit when you try to quit nip2. We recommend
you just say OK to the suggested location for the
file. Edit your menus with the programming win-
dow, see §4.4.

4.4 The programming window
To pop up the programming window, click on
Toolkits / Edit Toolkits in nip2’s main im-
age processing window. The window shown in Fig-
ure 2.11 on page 8 should appear.

Each of the things down the left of the program win-
dow is a toolkit. Each toolkit is a text file containing
a set of definitions in nip2’s programming language.
See Chapter 6 on page 31 for details on the language.

If you open a toolkit, nip2 shows all of the defini-
tions in that file. If you click on one of these nip2

shows the source for that definition in the main part of
the program window. After editing a definition, click on
File / Process to make nip2 read what you typed,
compile it, and update itself.

Click on File / New / Tool to add a new definition
to a toolkit, click on File / New / Toolkit to make
a completely new toolkit. You can also right-click on
tools and toolkits to get a context menu, and you can
left-drag tools to move them around within a toolkit or
between toolkits.

Some toolkits are loaded from files when nip2
starts up, others are built from the VIPS opera-
tion database (for example, arithmetic), and one
(called builtin) contains the functions that are built
into nip2. If you select a tool and then click on Help
/ Help on Tool, nip2 will try to display the rele-
vant section from the VIPS manual in your web browser.
Currently, this works only for things in the VIPS opera-
tion database: try arithmetic / im add, for exam-
ple. There’s a section in the Preferences workspace
to control which web browser nip2 uses and how it
asks for a page.

Toolkits and tools whose names begin with an
underscore character are not displayed in the main
Toolkits menu. The idea is that they represent little
utility functions, rather than stuff a user might be inter-
ested in. See §6.12.1 on page 43 for more information
on how tools and toolkits are displayed.

You can have several programming windows open at
the same time (often useful, if confusing). The Edit
menu lets you search for patterns across all definitions.
The Jump To Definition item jumps to the defi-
nition of a symbol.

The Debug menu has items which open a trace win-
dow (use this to track the actions taken by nip2’s re-
duction engine) and which report on unresolved sym-
bols and list all current errors.

4.5 Command-line interface

You can use nip2 from the command-line as well as
from the GUI. This can be handy for automation: you
can build a workspace and then run it over a whole set of
images, or use nip2 as part of a larger system. We’ve
make websites which use nip2 as the back-end.

In command-line mode nip2 runs without a GUI of
any sort, it doesn’t even need a window system to be
installed on the machine. This makes it possible to use

22 November 2009

nip2 Manual CHAPTER 4. REFERENCE

it in a server or batch context.
These notes are for the Unix command-line, but they

should work for Windows as well.
nip2 has three main modes of operation from the

command-line:

nip2 filename1 . . . Start nip2 in GUI mode, loading
the command-line arguments as files. Filenames
can be images, workspaces, matricies, toolkits, and
so on.

nip2 -e expression arg1 . . . Start in no-GUI mode,
print the value of expression. The list argv is set
to be ["filename","arg1",..].

nip2 -s filename arg1 . . . Start in no-GUI mode,
read in filename as a set of definitions, print the
value of symbol main. The list argv is set to be
["filename","arg1",..].

You can use the -o option to send output somewhere
other than the screen. If these modes don’t do quite what
you need, you can get finer control of how nip2 be-
haves with a set of other options: see the man page for
details.

4.5.1 Using expression mode
The -e option is very easy to use. For example:

nip2 -e "2 + 2"

Prints 4 to stdout.

nip2 -e "99 + Image_file argv?1" -o result.png fred.jpg

Loads argv1 (fred.jpg), adds 99, writes the result to
result.png.

nip2 -e "Matrix [[1,2],[4,5]] ** -1" -o poop.mat

Invert the 2x2 matrix and write the result to poop.mat.
If the result of the expression is a list, each item is

printed on a new line. For example:

nip2 -e "[1..5]"

Will print the numbers 1 to 5, each on a new line.
If you have a list result and you are using -o to direct

the output to a file, the filename will be incremented
each time you write. For example:

nip2 -e "map (add (Image_file argv?1)) [10, 20 .. 50]" -o result1.png fred.jpg

Will load fred.jpg, add 10, 20, 30, 40 and
50, then save those images to result1.png to
result5.png.

4.5.2 Using script mode

With the -s option you can use nip2 as a Unix script
interpreter.

Create a file in your favourite text editor called
brighten containing:

#!/usr/bin/nip2 -s

main
= clip2fmt infile.format (infile * scale), argc == 3
= error "usage: infile scale -o outfile"

{
infile = Image_file argv?1;
scale = parse_float argv?2;

}

The first line needs to be the path to nip2 on your sys-
tem. Use which nip2 to find the path if you don’t
know it. Mark the file as executable with chmod +x
brighten, then use it on one of your image files with:

brighten fred.jpg 1.5 -o bright_fred.png

See Chapter 6 on page 31 for details on the program-
ming language. This program multiplies each input
pixel by the constant, producing a floating point image,
then then clips the result back to the same format as the
original image (usually 8-bit unsigned).
nip2 takes a while (a few seconds) to start up, so this

isn’t going to be appropriate for small images or simple
calculations. But for complex operations, or operations
on large images, this mode can be very useful.

4.5.3 Using --set

The --set option (which can be abbreviated to -=)
lets you make changes to a workspace after loading it.
Suppose the workspace test.ws has a row called A1
with the value 12. Then entering:

nip2 test.ws --set Workspaces.test.A1=45

Will, as normal, start nip2 and load test.ws. But be-
fore the first recalculation, nip2 will change the value
of A1 to be 45. You can use --set to create new sym-
bols as well.

November 2009 23

CHAPTER 4. REFERENCE nip2 Manual

4.5.4 Other modes
A set of sub-options let you mix up other modes your-
self. For example, it’s common to want to run a
workspace on many files.

Suppose the workspace process.ws loads an im-
age in A1, performs some processing and produces a
result image A10. If you run nip2 with:

nip2 -bp \
-= ’Workspaces.process.A1=Image_file "fred.jpg"’ \
-= main=Workspaces.process.A10 \
-o fred.jpg process.ws

This will start nip2 in batch (ie. no GUI) mode (the -b
switch), load process.ws, change A1 to load another
file, set main to be the value of A10 and save the value
of A10 to fred.jpg (the -p switch).

24 November 2009

Chapter 5

Image processing menus

This chapter is runs quickly through the Toolkits
menu. See Chapter 6 on page 31 if you want to under-
stand how the menus are written (or want to add more
of your own). Use the Toolkit Browser to find stuff.

Some things are common to almost all menu items:

Tooltips If you rest your mouse pointer over an item,
you’ll see a quick description of what the item
does.

Grouping You can select several objects, click Edit /
Group, and then when you click the item, it will
operate on all the objects in the group.

Any type Almost all items will work on any object.
You can add an image and a number, for example,
find the colour difference between a number and an
image, or transform a matrix from LAB to XYZ.

5.1 Colour
This menu groups operations on colorimetric images
and patches of colour. A colour patch is three float num-
bers plus a tag saying how those number should be inter-
preted as colour (for example, as a colour in CIE LAB
colourspace). You can drag and drop between colour
patches, and into and from the inkwell in an image paint
window. Double-left-click on a colour patch to open a
colour select dialog.
nip2 has 9 main types of colorimetric image, see

Table 5.1 on page 26. All these types are D65 (that is,
daylight) absolute colorimetric. When it displays an im-
age, nip2 uses the Type field in the image header as a
hint on how to transform the numbers in the image into
RGB for the display. The current Type is displayed at
the end of the caption line below an image thumbnail.

The Mono, GREY16 and RGB16 types are not really
calibrated themselves: they are usually whatever you
get by loading an image from a file. You’ll usually need
an extra step, such as applying an embedded ICC pro-
file, before you get accurate colour.

New Make a patch of colour, or pick a colour from a
slice through CIELAB colourspace.

Convert To Colour Convert anything into a
Colour object.

Colourspace Change the colourspace. The stored
numbers change, but the visual appearance should
stay the same.

Tag As Change the colourspace tag (the Type field
in the image header). The stored numbers stay the
same, but the visual appearance should change.

Colour Temperature Change the colour temper-
ature. Move Whitepoint just adjusts the ratios
of X and Z using the CIE standard illuminants.

D65 to D50 and D50 to D65 transform us-
ing either a 3x3 matrix which is numerically mini-
mal in XYZ space with respect to the colours on
a Macbeth Color Checker, or via Bradford cone
space. The Bradford transform omits the power
term.

The final two items go from XYZ to LAB and
back, but with D50 normalisation rather than the
default D65.

ICC Transform images (not patches of colour) device
space to profile connection space (LAB float) and
back.

25

CHAPTER 5. IMAGE PROCESSING MENUS nip2 Manual

Name Format Notes
Mono One band 8 bit Not calibrated
sRGB Three band 8 bit Screen device space for the sRGB standard
GREY16 One band 16 bit Not calibrated
RGB16 Three band 16 bit Not calibrated
Lab Three band float The 1976 version of the CIE perceptual colourspace
LabQ Four band 8 bit Like Lab, but represented as 10:11:11 bits
LabS Three band 16 bit Like Lab, but represented as 15:16:16 bits
LCh Three band float Lab, but with polar coordinates
XYZ Three band float The base CIE colourspace
Yxy Three band float Sometimes useful for colour meters
UCS Three band float Highly uniform space from the CMC(l:c) standard

Table 5.1: nip2 colourspaces

You need to be careful about colour temperature
issues: all printers work with D50, and nip2 is all
D65. Use the D65 to D50 interchange items in the
Colour Temperaturemenu to swap back and
forth.

All printers also work with relative colorimetry,
and nip2 is generally absolute. Use Absolute
to Relative to scale an absolute colorimetric
image by a media white point.

Radiance nip2 can read and write images writ-
ten by the Radiance family of programs (usually
with the suffix .hdr), commonly used in HDR
photrography.

Images in this format used a packed floating point
layout for their pixels. Items in this menu pack and
unpack pixels for you.

Difference Calculate various colour difference
metrics. You can mix patches of colour and colour
images.

Adjust Change colour in a colorimetric way.
Recombination multiplies each pixel in an
image through a matrix. Cast displaces the
neutral axis in LAB space. HSB lets you adjust an
image in LCh colourspace.

Similar Colour find pixels in an image with a
similar colour to a patch of colour.

Measure Colour Chart This takes a trimmed
image of a colour chart (a rectangular grid of
coloured squares), measures the average pixel

value in the centre 50% of each square, and returns
a matrix of the measured values.

Use Make Synthetic Colour Chart to
make a colour chart image from a matrix of mea-
surements.

Plot ab Scatter draws a 2 dimensional his-
togram of the distribution of pixel colours in LAB
colourspace.

5.2 Filter
This menu groups operations which filter images, or
which are filters in the photoshop sense.

Convolution This menu has several standard con-
volution operations (blur, sharpen, edge detect,
etc.), plus the option to convolve with a custom
kernel.

Two menu items are slightly more complicated.
Unsharp Mask transforms to CIE LAB colour
space, then sharpens just the L band with a cored
unsharp filter. The Tasks / Print menu has a
version of this filter tuned for typical inkjet print-
ers.

Custom Blur builds and applies a square or
gaussian convolution kernel for you based on a ra-
dius setting.

Rank A preset median filter, and a custom rank filter
that lets you specify window size and rank.

The Image Rank item does pixel-wise ranking
of a set of images.

26 November 2009

nip2 Manual CHAPTER 5. IMAGE PROCESSING MENUS

Morphology These menu items implement basic
morphological operations. Images are zero for
background and non-zero (usually 255) for object.
Matricies are shown as 0, 1 and * for background,
object and don’t-care.

The Threshold item does a simple level thresh-
old. Use the Math / Relational menu to con-
struct more complex image binarisations. Use
Math / Boolean to combine morphologies.

The first half of the menu lists simple erode and di-
late operations, 4- and 8-way connected. The sec-
ond half contains several useful compound filters.

See also Histogram / Find Profile for
something that can search an image for object
edges. And MathStatistics / Edges can
count the number of edges across and down an im-
age.

Fourier A selection of ideal, Gaussian and Butter-
worth Fourier space filters.

You can make other mask shapes yourself using
the Image / Make Patterns menus, then ap-
ply them using Math / Fourier. You can also
use the image paintbox to directly paint out peaks
in a fourier-space image before transforming back
to real space.

Enhance A selection of simple image enhancement
filters. Statistical Difference passes a
window over an image and tries to match the re-
gion statistics at each point to a target mean and
deviation.

Spatial Correlation Place a small image at ev-
ery possible position in a big image and calcu-
late the correlation at each position. Simple
Difference is the much faster unnormalised
version.

GREYCstoration VIPS includes a copy of the
CImg library and you can use two useful CImg op-
erations from this menu: denoising and enlarging.

Tilt Brightness A selection of tools for adjust-
ing the brightness of an image across it’s surface.
Useful for correcting lighting problems.

Blend Blend two objects together using either a third
object to control the blend at each point, or a slider

to set all points together. You can blend almost
anything with anything.

One useful version is to use a text image (see
Image / Make Patterns / Text) to blend be-
tween two colours (see Colour / New).

Along Line does a left/right or top/bottom fade
between two images.

Overlay Make a colour overlay of two monochrome
images. Useful with Image / Transform / for
testing image superposition.

Colourize Use a colour image to tint a monochrome
image. Useful in conjunction with Image /
Transform / .

Browse Look at either the bits or the bands of an im-
age.

Photographic Negative and friends A small
selection of simple, faintly photoshop-style filters.

5.3 Histogram
This menu groups operations for finding and transform-
ing image histograms. nip2 represents histograms and
lookup tables as images with Type set to Histogram.
Histograms may have pixels in any format and any num-
ber of bands. You can only find histograms of unsigned
8- and 16-bit images.

New This makes a new ramp histogram. A set of sliders
let you adjust the shape. Use Map Histogram to
apply your ramp to an image.

Build LUT from Scatter makes a his-
togram from a matrix of (x, y) values.

Tag Image as Histogram marks an image
as actually being a histogram after all.

Tone Curve builds a tone curve which you can
later apply to an image.

Find A one dimensional histogram treats each band
as an independent variable. An n-dimensional his-
togram treats each pixel as a vector of n elements,
where n is the number of bands in the image.

Map Looks up each pixel in the input in the histogram
and sends the found value to the output.

November 2009 27

CHAPTER 5. IMAGE PROCESSING MENUS nip2 Manual

Equalise Find the global or locally histogram
equalised image.

Cumulative Use this and friends to calculate a cu-
mulative histogram (integrate), normalise a his-
togram and match two histograms.

Find Profile Searches from the edges of an image
for the first non-zero pixel and returns a profile his-
togram.

Find Projections Sum columns and rows in an
image.

Plot Slice Mark a guide on an image (drag from
the image rulers, or click File / New / Guide)
and click Plot Slice to make a histogram
which is a horizontal or vertical slice through an
image. Use Extract Arrow to extract the area
around an arrow or guide. Use Plot Object to
make a plot of any object.

5.4 Image
This menu groups operations which apply only to im-
ages.

New Makes a new image. Region on Image
makes a new region, arrow, guide or mark on an
image. It’s usually easier to open a viewer on an
image and Ctrl-drag.

Convert to Image Try to make an image out of
anything.

Format Switch between the various precisions.

Header Try to change or examine the image header in
various ways.

Cache This caches an image in RAM. Use this to save
the results of a long computation.

Levels Various tools that change the levels in an im-
age. Tone Curve is the only complex one: it lets
you adjust the image levels with a set of sliders.

Transform Various tools that change the geometry of
an image.

To use Rotate / Straighten, mark an ar-
row on an image (Ctrl-drag up and left in an im-
age view window) along a near-horizontal or near-
vertical edge. When you click on Rotate /

Straighten, nip2 will rotate the image by the
smallest amount that makes that edge exactly hori-
zontal or vertical.

Linear Match takes two images and rotates
and scales the second so that the images can be su-
perimposed. Drag the tie-=points to mark common
features. Use Filter / Overlay or Filter /
Colourize to actually superimpose them.

Rubber Sheet is useful for fixing things like
lens distortion. You give Find two images, a ref-
erence and a distorted version of that reference, and
it automatically finds a transform which will map
the distorted image back on to the reference image.
Use Apply to apply the discovered transform to
another image.

Band Extract/insert/delete image bands. Use To
Dimension to change image bands into a hori-
zontal or vertical dimension. Use To Bands to
compress the horizontal or vertical dimension into
bands (small images only!).

Crop Crops an image. It’s often easier to drag out a
region. This menu item is only really useful for
cropping large groups of images.

Insert This takes two images and pastes the smaller
into the centre of the larger. The two images have
to have the same number of bands. If you open an
image viewer on the large image, you’ll see an area
which you can drag around to set the exact insert
point.

Select Draw elipses and polygons on an image. Use-
ful for selecting defined areas.

Join Use to join two images together bandwise,
left/right or up/down. Array joins a list of lists
of images together into a single large image.

Tile Repeat an image horizontally and vertically to
make a larger image, or chop an image into a set of
tiles.

Patterns These items all make useful images for
you, from checkerboards to gaussian masks. XY
Image is the most useful: you can use it to build
other patterns.

Test Images These items make a variety of use-
ful testcharts for evaluating spatial response and
colour.

28 November 2009

nip2 Manual CHAPTER 5. IMAGE PROCESSING MENUS

5.5 Math
Basic maths operations on any combination of any ob-
jects. You can add a slider to a matrix, for example,
then divide by an image. Hopefully most of these are
obvious.

Arithmetic / Absolute Value Vector The
absolute value item normally calculates mod of
each band of an image separately. By contrast,
Absolute Value Vector treats each pixel
as a vector and calculates the modulus of that.

List These aren’t really maths operations, but they’re
in here too.

5.6 Matrix
This menu groups operations which operate on ma-
tricies. nip2 has four ways of displaying a matrix, but
they all behave in the same way under the skin. Almost
all the items in the Math menu will work on matricies.
Most of the matrix operations will also work on images.

New The first four items make matricies which display
and edit in various ways useful for different appli-
cations. The final two make matricies which are
pre-filled with useful numbers.

Convert to Matrix Try to make anything into a
matrix.

Extract This group of items extracts various subma-
tricies. You can also do this graphically: just drag-
select an area in matrix.

Insert, Delete, . . . Also work on images, which
can be handy. A 45 degree rotate will only work
for square matricies with odd-length sides.

Invert Simple matrix-only maths operations.

Plot Scatter This takes a two-column matrix
where the columns are the X and Y positions of
points and draws a scatter graph.

5.7 Object
This groups a few items which had no obvious home
and which change the format of objects.

Duplicate Copy an object, stripping off any derived
classes. For images, this really takes a copy of the
underlying object (using im copy()).

List to Group Changes lists (see Math / List)
into Groups (see Edit / Group) and back. A list
os an ordered collection of objects. A group is a
list that nip2 will automatically iterate over.

Break Up Object This tries to take an object apart.
So a multi-band image becomes a list of 1-band
images. A matrix becomes a list of vectors, and so
on. Assemble Object is the inverse.

5.8 Tasks
This menu repeats many items from other menus, but
tries to group them by tasks they are useful for, rather
than by function.

5.8.1 Capture

This menu groups operations which are useful in captur-
ing images, or for the initial processing you might want
to do to an image captured from another program.

CSV Import Import an image from a CSV file, with
a few controls.

Interpret Analyze 7 Header Read the meta
fields for volume layout and calibration from the
Analyze header and reformat the image appropri-
ately.

Capture Video Frame This menu item will cur-
rently only work on Linux machines with a com-
patible video4linux capture card. See §3.1.1 on
page 11 for notes on how it works.

Smooth Use this to remove texture from images. It’s
handy in conjunction with Flatfield.

Flatfield Use this to correct homogeneity. Se-
lect an image of a piece of white (or mid-grey)
card, then select the image to correct, then click
Flatfield. Use Smooth to renmove texture
from the white card if necessary.

You can select a single white and a group of images
to correct a large set in one step

November 2009 29

CHAPTER 5. IMAGE PROCESSING MENUS nip2 Manual

White Balance Use this to move the white point to
make an area of the image you know to be white,
white. Mark a region on an image, enclosing a
patch you know to be white. Select the region and
the image and click on White Balance.

Find Colour Calibration Use this to colour
calibrate an image. Drag a region enclosing an im-
age of a Macbeth Color Checker Chart and click
Find Colour Calibration.

Apply Colour Calibration Use this to apply
the transform calculated by the previous item to
another image. Select the calibration object, se-
lect the RGB image you want calibrated, and click
Apply Colour Calibration.

5.8.2 Mosaic

The items in this menu are discussed in appalling detail
in Chapter 3 on page 11.

One Point Join two images left-right or top-bottom
with a simple translation. Mark a point on each
image to be joined (open image view window, Ctrl-
left-click, drag to position), then click on the mo-
saic button. The operation performs elaborate tie-
point adjustment, so your selection of a common
feature does not have to be exact.

The Manual versions do not perform automatic
tie-point correction and are useful when joing very
difficult images.

Two Point Do a join, but allow the right-hand (or
bottom) image to rotate and scale if it will improve
the match. You need to pick two points on each
image.

Balance Break a mosaic apart, examine average pixel
value in the overlap regions, adjust brightness to
match, and reassemble. This only works for im-
ages which have been produced just by mosaic
joins! If you’ve done anything else to the image
since loading it, the balance will fail with a myste-
rious message.

Manual Balance Adjust the brightness in a set of
masked areas to match. Useful for removing shad-
ows.

Rebuild Use this to mosaic up one set of files based
on joins you made in another. Breaks a mosaic part
to component files, performs a string substitution
on the file names, and reassembles.

Clone Area Select over- or under-exposed pixels in
one image and replace them with the correspond-
ing pixels from another image. Useful for remov-
ing lead numbers used to identify X-ray plates.

The function operates on two 8-bit mono images.
Move and resize the region on the first image to
define the area around the white number. Move
the region on the second to overlapping area. A
section of the area on the second image is cloned
and blended into the first image. The amount of
the defined area to be cloned in defined by a slider
within the output image.

5.8.3 Picture Frame
Items useful for mocking up painting frames.

5.8.4 Print
Items useful while preparing an image for printing.

Sharpen Sharpen an image for printing. This is a
version of Filter / Convolution / Unsharp
Mask tuned for typical inkjet printers.

Adjust Tone Curve Adjust the reproduction tone
curve in LAB. Most useful for offset work, espe-
cially from transparencies.

30 November 2009

Chapter 6

Programming

nip2 includes a tiny lazy functional programming lan-
guage. You can use it to glue VIPS image processing
functions together to perform more complicated tasks.
All of the nip2 toolkit menus are written in this lan-
guage.

These first sections just describe the programming
language. See §4.4 on page 22 for a description of the
programming window. You use nip2’s programming
language to control the user interface: the link between
what happens inside a nip2 function and what you see
on the screen in covered in §6.12 on page 43.

6.1 Load and save

When nip2 starts up it loads all of the definition files
(files with a .def extension) it can find in the directo-
ries listed in your start path. You can change the start
path in Preferences. By default, the start path lists just
two areas: a personal start directory that nip2 makes
in your home area, and the main system nip2 start di-
rectory containing all the standard toolkits.

If there are two files with the same name on the start
path, then nip2 will only load the first one. This means
that if you modify one of nip2’s built-in menus and
save it to your personal start directory, in future you’ll
just see your personalised version.

You can load or reload a toolkit at any time with the
File / Open Toolkit menu item in the program
window. If you open a toolkit with the same name as
an existing toolkit, nip2 will remove the old toolkit
before it loads the new one.

6.2 Using an external editor
If you’re going to be doing any more than a little pro-
gramming in nip2 you probably won’t want to use the
built-in editor. I suggest you start your favorite editor
in one window on the screen and then in the nip2 pro-
gram window click File / Open Toolkit and check
the Pin-up box in the file selector.

Now every time you want to try out your definition,
save the file from your external editor and click OK in
nip2’s file selector.
nip2’s editor automatically adds some semicolon

characters to separate definitions in a file. If you’re us-
ing an external editor, you’ll need to put these in your-
self. Also check the syntax for adding separators and
column items to menus.

6.3 Syntax
The most basic sort of definition looks like this:

// very simple!
fred = 12

This defines a function called fred whose value is the
number 12. The // marks a comment: everything to
the end of the line is skipped. Case is distinguished, so
Fred and fred are two different functions. You can
use letters, numbers, underscores and single quotes in
function names.

You can have patterns on the left of the equals sign.
For example:

[fred, petra] = [12, 13]

defines fred to have the value 12 and petra to have
the value 13. See §6.9 on page 38 for details.

31

CHAPTER 6. PROGRAMMING nip2 Manual

Functions may take parameters:

/* A function with parameters.

*/
jim a b = a + b + 12

This defines a function called jim which takes two pa-
rameters and whose value is the sum of the two parame-
ters, plus 12. The /* and */ enclose a multi-line com-
ment.

Functions may have several right-hand-sides, each
right-hand-side qualified by a guard expression. Guards
are tested from top to bottom and the first guard which
has the value true causes the function to have the value
of that right-hand-side. If no guard evaluates to true,
then the last right-hand-side is used.

jenny a b
= 42, a + b >= 100
= 43, a + b >= 50
= 44

This defines a function called jenny which takes two
parameters and whose value is 42 if the sum of the pa-
rameters is 100 or greater; 43 if the sum is greater than
or equal to 50 but less than 100; and 44 if the sum is less
than 50.

Any function may be followed by any number of local
functions, enclosed in curly braces. So jenny could be
written as:

jenny a b
= 42, sum >= 100
= 43, sum >= 50
= 44

{
sum = a + b;

}

Note that you need a semi-colon after each local func-
tion. A local function may refer to anything in an en-
closing scope, including itself.

You can write if-then-else expressions:

david a = if a < 12 then "my cat"
else "likes lasagne"

This is exactly equivalent to:

david a
= "my cat", a < 12
= "likes lasagne"

if-then-else expressions are sometimes easier to
read than guards.

Functions application is with spaces (juxtaposition).
For example:

harry = jim 2 3

defines harry to have the value 17.
All functions are curried, that is, they can accept their

arguments in stages. For example:

sandro = jim 1

defines sandro, a function which takes one parameter
and will add 13 to it. This trick becomes very useful
with list processing, see §6.7 on page 38.
nip2 has some built-in functions, see Table 6.1 on

page 33. They mostly take a single argument. All other
functions are defined in the various standard toolkits and
can be edited in the program window.

6.4 Naming conventions
You can name things in any way you like, but we’ve
used the following conventions.

• Classes start with a capital letter, words are sepa-
rated with underscores, subsequent words are not
capitalised (eg. Image file)

• Private names are prefixed with underscores (and
are hidden by most of the user interface)

• Functions from the VIPS library are prefixed with
im

• Global utility functions (eg. map), public mem-
bers (eg. Colour.colour space) are all lower
case, words are separated with underscores, subse-
quent words are not capitalised

• Constants are capitalised (eg.
Operator type.COMPOUND REWRAP)

6.5 Evaluation
nip2 calculates the value of an expression by using the
definitions you entered to successively reduce the ex-
pression until it becomes one of the base types. Some-
times there is a choice as to which part of the expression

32 November 2009

nip2 Manual CHAPTER 6. PROGRAMMING

Function Description
dir any List names in scope
has member [char] any Does class have member
name2gtype [char] Search for a GType by name
gtype2name real Return the name of a GType
error [char] Stop with error message
print any Convert to string
expand [char] Expand environment variables in string
search [char] Search for a file

[char] Translate string
is image any Test for image
is bool any Test for boolean
is real any Test for real
is class any Test for class
is char any Test for char
is list any Test for list
is complex any Test for complex
is instanceof [char] any Test for instance of class
re image/complex/class Extract real part of complex
im image/complex/class Extract imaginary part of complex
hd list Extract head of list
tl list Extract tail of list
sin image/number/class Sine
cos image/number/class Cosine
tan image/number/class Tangent
asin image/number/class Arc sine
acos image/number/class Arc cosine
atan image/number/class Arc tangent
log image/number/class Natural log
log10 image/number/class Base 10 log
exp image/number/class e to the power
exp10 image/number/class 10 to the power
ceil image/number/class Round up
floor image/number/class Round down
gammq real real Normalised incomplete Gamma function
vips image [char] Load image from file
read [char] Load file as a string

Table 6.1: nip2 built in functions

November 2009 33

CHAPTER 6. PROGRAMMING nip2 Manual

will be reduced next — nip2 will always choose to re-
duce the leftmost, outermost part of the expression first.

For example, consider this definition:

factorial n
= n * factorial (n - 1), n > 1
= 1

And here’s how nip2 will evaluate the expression
factorial 3:

factorial 3 -->
3 > 1 -->
true

3 * factorial (3 - 1) -->
(3 - 1) > 1 -->
2 > 1 -->
true

3 * (2 * factorial (2 - 1)) -->
(2 - 1) > 1 -->
1 > 1 -->
false

3 * (2 * 1) -->
3 * 2 -->
6

Note how nip2 delays evaluating parameters to func-
tions until they are needed, but still shares the result. 3
- 1 is only evaluated once, for example, even though
the result is used three times. nip2 has a trace win-
dow: click on Debug / Trace in the program window
and check the View / Operators menu item.

The advantage of this style of computation over con-
ventional imperative programming languages is that you
can reason about your program mathematically1.

This isn’t the best way to write a factorial function.
A function with lots of recursive calls can be hard to
understand — it’s much better to use one of the higher
order functions from the standard environment to encap-
sulate the type of recursion you want to use.

The clearest definition for factorial is probably:

factorial n = product [1..n]

See §6.6.5 on page 36 for an explanation of the list syn-
tax.

1Since programs are referentially transparent (that is, the value of
an expression depends only upon its syntactic context, not upon com-
putation history), you can easily do equational reasoning, proof by
induction, and so on.

Expressions are like theorems, definitions are like axioms, compu-
tation is like proof.

6.6 Operators
nip2’s expression syntax is almost exactly the same as
C, with a few small changes. Table 6.2 on page 35 lists
all of nip2’s operators in order of increasing prece-
dence. If you’ve used C, the differences are:

• C’s ?: operator becomes if-then-else, see
above

• Like almost every functional language, nip2 uses
square brackets for list constants (see §6.6.5 on
page 36), so to index a list, nip2 uses ?

• nip2 adds @ for function composition, see §6.6.6
on page 37

• The : operator is infix list cons, see §6.7 on
page 38

• The ++ operator becomes an infix concatenation
operator, -- becomes list difference. Again, see
§6.6.5 on page 36

The only slightly tricky point is that function applica-
tion binds very tightly (only list index and class project
bind more tightly). So the expression:

jim = fred 2 + 3

binds as:

jim = (fred 2) + 3

This is almost always the behaviour you want.
There are two special equality tests: === and !==.

These test for pointer equality, that is, they return true
if their arguments refer to the same object. These are
occasionally useful for writing interactive functions.

6.6.1 The real type
nip2 has a single number type for integers and real
numbers. All are represented internally as 64-bit float-
ing point values. You can use the four standard arith-
metic operators (+, -, *, /), remainder after integer di-
vision (%), raise-to-power (**), the relational operators
(<, <=, >, >=, ==), the bitwise logical operators (&, |, ˆ,
˜), integer shift operators (<<, >>) and unary negation
and positive (-, +).

Other mathematical functions are pre-defined for
you: sin, cos, tan, asin, acos, atan, log,

34 November 2009

nip2 Manual CHAPTER 6. PROGRAMMING

Operator Associativity Description
if then else Right If-then-else construct
=> Left Form name/value pair
|| Left Logical or
&& Left Logical and
@ Function composition (see §6.6.6 on page 37)
| Left Bitwise or
ˆ Left Bitwise exclusive or
& Left Bitwise and
== Left Equal to
!= Not equal to
=== Pointer equal to
!== Pointer not equal to
< Left Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
<< Left Left shift
>> Right shift
+ Left Addition
- Subtraction
* Left Multiplication
/ Division
% Remainder after division
! Left Logical negation
˜ One’s complement
++ Join (see §6.6.5 on page 36)
-- Difference (see §6.6.5 on page 36)
- Unary minus
+ Unary plus
(type) Type cast expression
** Right Raise to power
: List CONS (see §6.6.5 on page 36)
space Left Function application
? Left List index (see §6.6.5 on page 36)
. Left Class project (see §6.11 on page 40)

Table 6.2: nip2 operators in order of increasing precedence

November 2009 35

CHAPTER 6. PROGRAMMING nip2 Manual

log10, exp, exp10, ceil, floor. Each has the
standard behaviour.

You can use type-casts on reals. However, they re-
main 64-bit floating point, the range is simply clipped.
Casting to unsigned short produces a 64-bit float
whose fractional part has been set to zero, and which
has been clipped to the range 0 to 65535. This may or
may not cause rounding problems.

You can write hexadecimal number constants as
0xff.

6.6.2 The complex type
Complex numbers are rather sketchily implemented.
They are generally handy for representing vectors and
coordinates rather than for doing arithmetic, so the
range of operations is limited.

Complex constants are written as two numbers en-
closed in round brackets and separated by a comma.
You can use the four standard arithmetic operators (+,
-, *, /), raise-to-power (**), and unary negation and
positive (-, +). You can use == only of the relational
operators. You can mix complex and real numbers in ex-
pressions. You can cast reals to complex and back. Use
the functions re and im to extract the real and imagi-
nary parts.

(12, 13) + 4 == (16, 13)
(12, 2 + 2) == (12, 4)
re (12, 13) == 12
im (12, 13) == 13

6.6.3 The character type
Character constants are written as single characters en-
closed in single quotes. You can use the relational op-
erators (<, <=, >, >=, ==) to sort characters by ASCII
order. You can cast a character to a real to get its ASCII
value. You can cast a real ASCII value to a character.
You can use the standard C escapes to represent non-
ASCII characters.

(int) ’A’ == 65
(char) 65 == ’A’
is_digit x = ’0’ <= x && x <= ’9’
newline == ’\n’

6.6.4 The boolean type
The two boolean constants are written as true and
false. Boolean values are generated by the relational

operators. You can use the standard logical operators
(&&, ||, !). You can use a boolean type as an argument
in an if-then-else expression.

As with C, the logical operators do not evaluate their
right-hand sides if their value can be determined just
from evaluating their left-hand sides.

true && false == false
true || error "boink!" == true
if true then 12 else 13 == 12

6.6.5 The list type
Lists are created from two constructors. [] denotes
the empty list. The list construction operator (:, pro-
nounced CONS by LISP programmers) takes an item
and a list, and returns a new list with the item added to
the front. As a convenience, nip2 has a syntax for list
constants. A list constant is a list of items, separated by
commas, and enclosed in square brackets:

12:[] == [12]
12:13:14:[] == 12:(13:(14:[])) ==
[12,13,14]

[a+2,3,4] == (a+2):3:4:[]
[2]:[3,4] == [[2],3,4]

Use the functions hd and tl to take the head and the
tail of a list:

hd [12,13,14] == 12
tl [12,13,14] == [13,14]

Use .. in a list constant to define a list generator.
List generators build lists of numbers for you:

[1..10] == [1,2,3,4,5,6,7,8,9,10]
[1,3..10] == [1,3,5,7,9]
[10,9..1] == [10,9,8,7,6,5,4,3,2,1]

List generators are useful for expressing iteration.
Lists may be infinite:

[1..] == [1,2,3,4,5,6,7,8,9 ..]
[5,4..] == [5,4,3,2,1,0,-1,-2,-3 ..]

Infinite lists are useful for expressing unbounded itera-
tion. See §6.8 on page 38.

You can write list comprehensions like this:

[x :: x <- [1..]; x % 2 == 0]

36 November 2009

nip2 Manual CHAPTER 6. PROGRAMMING

This could be read as All x such that x is in [1..] and
x is even, that is, the list of even numbers.

You can have any number of semicolon-separated
qualifiers and each one can be either a generator
(like x <- [1..]) introducing a new variable or
pattern (see §6.9 on page 38), or a predicate (like
x % 2 == 0) which filters the generators to the left
of it.

Later generators change more rapidly, so for exam-
ple:

[(x, y) ::
x <- [1..3]; y <- [x..3]] ==

[(1, 1), (1, 2), (1, 3),
(2, 2), (2, 3), (3, 3)]

You can nest list comprehensions to generate more
complex data structures. For example:

[[x * y :: x <- [1..10]] ::
y <- [1..10]]

will generate a times-table.
You can use pattern-matching (see §6.9 on page 38)

to loop over several generators at the same time. For
example:

[(x, y) :: [x, y] <-
zip2 [1..3] [1..3]] ==

[(1, 1), (2, 2), (3, 3)]

As a convenience, lists of characters may be written
enclosed in double quotes:

"abc" == [’a’,’b’,’c’]

You can define a string constant which has the same
form as a variable name (that is, letters, numbers, un-
derscore and apostrophy only) with a $ prefix. For ex-
ample:

$form7 == "form7"

nip2 often uses these in option lists.
You can define a name, value pair with the => opera-

tor.

$fred => 12 == ["fred", 12]

Again, these pairs are frequently used to pass options to
objects.

A list may contain any object:

[1,’a’,true,[1,2,3]]

Mixing types in a list tends to be confusing and should
be avoided. If you want to group a set of diverse objects,
define a class instead, see §6.11 on page 40.

Lists of lists of reals are useful for representing ar-
rays.

You can use the list index operator (?) to extract an
element from a position in a list:

[1,2,3] ? 0 == 1
"abc" ? 1 == ’b’

You can use the list join operator (++) to join two lists
together end-to-end.

[1,2,3] ++ [4,5,6] == [1,2,3,4,5,6]

You can use the list difference operator (--) to re-
move elements of one list from another.

[1..10] -- [4,5,6] == [1,2,3,7,8,9,10]

6.6.6 The function type
Functions are objects just like any other. You can pass
functions to other functions as parameters, store func-
tions in lists, and so on.

You can create anonymous functions with \
(lambda). For example:

map (\x x + 2) [1..3] == [3, 4, 5]

You can nest lambdas to make multi-argument anony-
mous functions, for example:

map2 (\x\y x + y) [1..3] [2..5] ==
[3, 5, 7]

You can compose functions with the @ operator. For
example, for two functions of one argument f and g:

f (g 2) == (f @ g) 2

6.6.7 The image type
These represent a low-level handle to a VIPS image
structure. You can make them with the vips image
builtin, and you can pass them as parameters to VIPS
functions. The Image class is built on top of them, see
§6.12.3 on page 45.

As an accident of history, nip2 also lets you do arith-
metic with them. This will probably be removed in the
next version or two, so it’s best to go through the higher-
level Image class.

November 2009 37

CHAPTER 6. PROGRAMMING nip2 Manual

6.7 Lists and recursion
Functional programming languages do not have vari-
ables, assignment or iteration. You can achieve the same
effects using just lists and recursion.

There are two main sorts of recursion over lists. The
first is called mapping: a function is applied to each el-
ement of a list, producing a new list in which each ele-
ment has been transformed.

map fn [a,b,c] == [fn a, fn b, fn c]

The second main sort of recursion is called folding:
a list is turned into a single value by joining pairs of
elements together with a function and a start value.

foldr fn start [a,b .. c] ==
(fn a (fn b (.. (fn c start))))

(The function is called foldr as it folds the list up
right-to-left. There is an analogous function called
foldl which folds a list up left-to-right, but because
of the way lists work, it is much slower and should be
avoided if possible.)
map is defined in the standard list library for you:

/* map fn l: map function fn over list l

*/

map fn l
= [], l == []
= fn (hd l) : map fn (tl l)

So, for example, you could use map like this:

map (add 2) [1..5] == [3,4,5,6,7,8]

foldr is defined in the standard list library for you:

/* foldr fn st l: fold up list l,

* right to left with function fn and

* start value st

*/

foldr fn st l
= st, l == []
= fn (hd l) (foldr fn st (tl l))

So, for example, you could use foldr like this:

foldr add 0 [1..5] == 15

(Mathematically, foldr is the more basic operation.
You can write map in terms of foldr, but you can’t
write foldr in terms of map.)

Unconstrained recursion over lists can be very hard
to understand, rather like goto in an imperative lan-
guage. It’s much better to use a combination of map
and foldr if you possibly can.

The toolkit list contains definitions of most of the
standard list-processing functions. These are listed in
Table 6.3 on page 39. Check the source for detailed
comments.

6.8 Lazy programming
nip2’s programming language is lazy, that is, it de-
lays evaluation as long as it possibly can. For example,
error is a function which immediately halts execution
of your function and pops up an alert window. So:

12 + error "wombat!"

Has no value: this expression will halt with an error
message. However:

false && error "lasagne!"

Will evaluate to false, since nip2 knows after look-
ing at the left-hand-side of && that the result must be
false, and so does not evaluate the right-hand-side.

[12, error "hot chilli!"] ? 0 == 12

This also evaluates completely, since the second ele-
ment of the list is never used, and therefore never eval-
uates.

Things become more confusing when you start call-
ing functions, since the arguments to a function call are
also not evaluated until the function needs that value.
For example:

foldr (error "boink!") 2 [] == 2

Again, this evaluates successfully, since the function is
never used by foldr.

6.9 Pattern matching
Any time you define a name, you can use a pattern in-
stead. For example:

38 November 2009

nip2 Manual CHAPTER 6. PROGRAMMING

Name Description
all l and all the elements of list l together
any l or all the elements of list l together
concat l join a list of lists together
drop n l drop the first n elements from list l
dropwhile fn l drop while fn is true
extract n l extract element n from list l
filter fn l all elements of l for which fn holds
foldl fn st l fold list l left-to-right with fn and st
foldl1 fn l like foldl, but use the first element of the list as the start value
foldr fn st l fold list l right-to-left with fn and st
foldr1 fn l like foldr, but use the first element of the list as the start value
index fn l search list l for index of first element matching predicate fn
init l remove last element of list l
iterate f x repeatedly apply f to x
last l return the last element of list l
len l find length of list l
limit l find the first element of list l equal to its predecessor
map fn l map function fn over list l
map2 fn l1 l2 map 2-ary function fn over lists l1 and l2
map3 fn l1 l2 l3 map 3-ary function fn over lists l1, l2 and l3
member l x true if x is a member of list l
mkset l remove duplicates from list l
postfix l r add element r to the end of list l
product l product of list l
repeat x make an infinite list of xes
replicate n x make n copies of x in a list
reverse l reverse list l
scan fn st l apply (foldr fn r) to every initial segment of list l
sort l sort list l into ascending order
sortc fn l sort list l into order by using a comparison function
sortpl pl l sort list l by predicate list pl
sortr l sort list l into descending order
split fn l break list l into sections separated by predicate fn
splits fn l break list l into single sections separated by predicate fn
splitpl pl l break list l up by predicate list pl
split lines n l break list l into lines of length n
sum l sum list l
take n l take the first n elements from list l
takewhile fn l take from the front of l while fn holds
zip2 l1 l2 zip two lists together
zip3 l1 l2 l3 zip three lists together

Table 6.3: Functions in the standard list-processing toolkit

November 2009 39

CHAPTER 6. PROGRAMMING nip2 Manual

[fred, petra] = [12, 13]

defines fred to have the value 12 and petra to have
the value 13.

A pattern describes the structure you are expecting
for the value. When the value is computed it is matched
against the pattern and, if the match is successful, the
names in the pattern are bound to those parts of the
value. Our example is exactly equivalent to:

temp = [12, 13];
fred

= temp?0, is_list temp &&
is_list_len 2 temp

= error "pattern match failed";
petra

= temp?1, is_list temp &&
is_list_len 2 temp

= error "pattern match failed";

where temp is an invisible, anonymous symbol.
You can pattern match on any of nip2’s data struc-

tures and types. You can use:

a:b Tests for the value being a non-empty list and then
assigns a to the head and b to the tail.

(a,b) Tests for the value being a complex and then
assigns a to the real part and b to the imaginary.

[a,b,c] Tests for the value being a list of length three
and then assigns a, b and c to the three elements.

(class− name b) Tests for the value being an in-
stance of the named class, then assigns b to that
class instance.

constant Tests for the value being equal to that con-
stant. Constants are things like "hello world"
or 12.

You can nest patterns in any way you like. Patterns
are useful in conjunction with list comprehensions, see
§6.6.5 on page 36.

You can’t use patterns in function arguments in the
current version, hopefully this will added shortly.

6.10 The standard libraries
nip2 comes with a lot of little utility functions. The
functions for list processing are listed in Table 6.3 on

page 39. There are a huge number more, too many to
really list here. Table 6.4 on page 41 lists all the util-
ity toolkits with some hints about the kinds of function
they contain. Read the (heavily commented) toolkits for
details.

6.11 Classes
You can define new types using class. For example:

Pasta_plain = class {
lasagne = "large sheets";
fusilli = "sort of twisty";
radiatori = "lots of ridges";

}

This defines a new class called Pasta plain. The
class has three members (lasagne, fusilli and
radiatori), each of which has a list of char as its
value. By convention, we’ve named classes with an ini-
tial capital letter, but of course you can do what you like.

You can refer to the members of a class using the class
project (.) operator. For example:

Pasta_plain.lasagne == "large sheets"

You can use an expression to the right of . if you en-
close it in brackets. For example:

Pasta_plain.("las" ++ "agne") ==
"large sheets"

Classes can contain any objects as members, includ-
ing functions and sub-classes. Functions may define lo-
cal classes, classes may define local functions, and all
may refer to each other using the usual scope rules. For
example:

Pasta_all = class {
filled = class {
tortelloni = "venus’ navel";
ravioli = "square guys";

}
plain = Pasta_plain;

}

When you define a class, nip2 adds a few extra
members for you. name is a list of char giving the
name of the class. this and super are the most-
enclosing class instance and the class instance this class

40 November 2009

nip2 Manual CHAPTER 6. PROGRAMMING

Toolkit Contains Description
convert parse int l, . . . convert ascii text to numbers

to matrix x, . . . convert anything into a matrix
colour transform to to x, . . . convert between colour spaces

generate image new w h ... make a blank image
image white i look at image i, try to guess what white is
make xy w h make an image of size w by h whose pixel value are

their coordinates
types Image i all the standard classes and support functions,

see §6.13 on page 45
predicate is colour space i test for objects are in various categories or have

various properties
stdenv logical and x, . . . function versions of all the operators

bandsplit i, . . . break up and recombine images by band
mean x, . . . statistical ops on objects
transpose x, flipud x, rot90 x, . . . flips, rotates, etc. on objects
rad x, pi, . . . trigonometry stuff
sign x, conj x, polar x, . . . complex stuff
rint x, ceil x, . . . various rounding things
fwfft x, . . . fourier stuff
dilate m x, rank w h n i, . . . morphology stuff
conv m x, . . . convolution stuff
image set type t i, . . . set various image header field
resize x y i, . . . resampling images
recomb m i, . . . recombinations
clip2fmt f i, . . . format conversions
hist find m x, . . . histogram stuff
id x, const x y, . . . various useful operations on functions
map binary fn x y, . . . mapping over groups

Table 6.4: Useful utility functions — see the source for details

November 2009 41

CHAPTER 6. PROGRAMMING nip2 Manual

is derived from (see §6.11.2 on page 42). nip2 also
adds a default constructor: a member with the same
name as the class, pointing back to the class constructor.

For efficiency reasons nip2 does not allow mutual
recursion at the top level. If two functions depend on
each other, neither will ever be calculated. For example:

a = 1 : b;
b = 2 : a;

Neither a nor b will have a value.
You can have mutual recursion between class mem-

bers. For example:

Fred = class {
a = 1 : b;
b = 2 : a;

}

Now Fred.a will have the value [1, 2, 1, 2,
1, ...].

6.11.1 Parameterised classes

Classes can have parameters. Parameters behave like
class members initialised from arguments to the class
constructor. For example:

My_pasta pasta_name cooked = class {
is_ready t = "your " ++

pasta_name ++ " is " ++ state
{

state
= "underdone!", t < cooked
= "perfect", t == cooked
= "yuk!";

}
}

This defines a class called My pasta which takes a
pasta name and a cooking time as parameters. Once
you have made an instance of My pasta, you can test
if it’s been cooked at a certain time with the is ready
member. For example:

tele = My_pasta "telephoni" 10;
tele.is_ready 5 ==

"your telephoni is underdone!"

6.11.2 Inheritance
Classes can inherit from a super-class. For example:

Pasta_more = class Pasta_plain {
macaroni = "tubes";
spaghetti = "long and thin";
lasagne = "fairly large sheets";

}

Here the new class Pasta more inherits members
from the previous class Pasta plain. It also over-
rides the definition of lasagne from Pasta plain
with a new value. For example:

Pasta_more.macaroni == "tubes"
Pasta_more.fusilli == "sort of twisty"
Pasta_more.lasagne == "fairly large sheets"

You can use this and super to refer to other mem-
bers up and down the class hierarchy. super is the
class instance that the current class inherits from (if
there’s no super-class, super has the value []), and
this is the most-enclosing class instance.

Pasta_more.super == Pasta_plain
Pasta_more.this == Pasta_more
Pasta_more.super.this == Pasta_more

therefore:

Pasta_more.lasagne == "fairly large sheets"
Pasta_more.super.lasagne == "large sheets"
Pasta_more.super.this.lasagne ==
"fairly large sheets"

There’s a special symbol root which encloses all
symbols. For example:

fred = 12;

Freddage = class {
fred = 42;
mystery = root.fred;

}

Now Fred.mystery will have the value 12.
There’s another special symbol called scope which

encloses all symbols in the file this definition was loaded
from. If you want to refer to another definition in the
same file which is being masked somehow, use scope.

You can use the built in function is instanceof
to test whether an instance is or inherits from a class.
For example:

42 November 2009

nip2 Manual CHAPTER 6. PROGRAMMING

is_instanceof "Pasta_more" Pasta_more == true
is_instanceof "Pasta_plain" Pasta_more == true
is_instanceof "Pasta_more" Pasta_plain ==

false

The super-class constructor can take arguments, and
these arguments can refer to class members. For exam-
ple:

Fresh_pasta pasta_name = class
My_pasta pasta_name cooked {
cooked = 2;

}

Defines a class for fresh pasta, which always cooks in
2 minutes. You need to be careful not to make loops:
if cooked did tried to refer to something in the super-
class, this class would never construct properly. nip2
unfortunately does not check for this error.

Finally, the superclass can be a fully constructed
class. In this case, the superclass is cloned and the new
class members wrapped around it. You can use this to
write a class which can wrap any other class and add
members to it. Many of the toolkit menu items use this
trick to enable them to work for any object type.

6.11.3 Minor class features
There are a couple of other things you can do with
classes. You can define a special member called
check. If this member is defined, then when a class in-

stance is created, the check member is returned instead
of the class itself. You can use this to implement class
argument type checks, for example:

Fred a b = class {
_check

= this, is_real a && is_real b
= error "args to Fred must " ++

"both be real"
}

Defines a class called Fred which has to have two real
numbers as arguments.

You can define members called oo binary,
oo binary’ and oo unary and do operator over-
loading. When nip2 sees one of the standard operators
being used on an instance of your class, it will look up
one of these members and pass in the name of the op-
erator and the argument. The two forms of the binary
operator member are called for the class-on-left and the
class-on-rights cases. So:

x = Fred 1 2
x + 12 == x.oo_binary "add" 12
12 + x == x.oo_binary’ "add" 12
!x == x.oo_unary "negate"

These two features are very primitive. The Object
class in the types toolkit builds on these to provide
a fairly high-level system for checking class arguments
and defining the meaning of operators. See §6.13 on
page 45.

6.12 Controlling the interface
nip2 looks at the scraps of program you type in and ex-
ecute and tries to show them on the screen in a graphical
way. The sorts of display you get depend on where in
nip2 you define the expression, and what sort of value
it has.

6.12.1 Tools and toolkits

Definitions in toolkits are turned into menus off the
Toolkits menu in the main window, and added to the
toolkit browser. Toolkits are loaded from files at startup
or can be made in the program window. Toolkit or a def-
inition names which start with an underscore character
are hidden and not displayed. The toolkits are always
displayed in alphabetical order, but you can order the
items within a toolkit in any way you like.

There are two ways to write toolkit definitions. Func-
tion definitions and zero-argument classes simply ap-
pear as menu items, built from static analysis of their
source code. However, if a definition evaluates to an
instance of the class Menu, a menu item is built from
dynamic analysis of the value of the definition.

Static menu items

Zero-argument classes within toolkits are displayed as
pull-right menus. You can nest classes to any depth.
nip2 uses the first line of the comment before a defi-

nition as help text for that function, so it’s a good idea to
put a simple one-line description of the function at the
start of a comment.

For example, if the following text is placed in a file
called Fred.def on nip2’s start path, you’ll get a
menu in the tookits called Fred with a pull-right and a
tooltip. See Figure 6.1 on page 44.

November 2009 43

CHAPTER 6. PROGRAMMING nip2 Manual

Figure 6.1: How Fred.def will look

Banana a = a * 3;

Subfred = class {
// add two things
Jim a b = a + b;
Apple e = e * 12;
Harry z = 12 + z;

}

Dynamic menu items

Dynamic menus give you much more control over the
way menus are drawn and make it easy to reuse menus.
A dynamic menu item is a class instance that is a sub-
class of Menuitem. It needs to have three mem-
bers: label, the text that should appear in the menu
(with an underscore character to indicate the mnenonic);
tooltip, a short hint that appears as a tooltip or in
the toolkit browser; icon, an optional image file to be
displayed in the menu next to the text; and action,
the function that is called when the menu item is acti-
vated. label and tooltip are constructor arguments
for Menu.

So for example:

Wombat_find_item = class Menuitem
"_Find Wombat"
"analyse image and locate wombat" {
icon = "nip-slider-16.png";
action x = im_wombat_locate x;

}

will appear as shown in Figure 6.2.
A dynamic pullright menu is a subclass of

Menupullright. It’s just like Menuitem, but with-
out the need for an action member. Any members
which are subclasses of Menu are displayed as items in
the submenu. So again:

Figure 6.2: How Wombat find item will look

Figure 6.3: How Wombat item will look

Wombat_item = class Menupullright
"_Wombat"
"wombat-related operations" {
icon = "nip-slider-16.png";
item1 = Wombat_find_item;
sep = Menuseparator;
boink = Wombat_find_item;

}

will appear as shown in Figure 6.3.

6.12.2 Workspaces
Definitions in workspaces are displayed with nip2’s
class browser. Each row is displayed in four main parts:
a button for the row name, a line of text, a set of sub-
rows for the members of the row’s class, and a graphic
display representing the row’s value. See Figure 6.4.

The text part of the right-hand-side of each row is al-
ways displayed, but the sub-rows are only displayed if
the row represents a class, and the graphic is only dis-
played if the class is an instance of one of the classes
in Table 6.5 on page 46. You can subclass these if you
want to use the graphic display in your own widgets.

There are three separate ways to set the value for a
row. You can edit the line of program text, you can

44 November 2009

nip2 Manual CHAPTER 6. PROGRAMMING

Figure 6.4: Components of a workspace row

edit one of the members, or you can manipulate the
graphic representation (dragging a slider, or moving a
region). These can be contradictory, so nip2 resolves
conflicts by always applying changes in the order text,
then graphic, then member.

When it applies a graphic change, nip2 rebuilds the
class using a class member called class-name edit, or
if that is not defined, the class’s constructor member.
For example, the Colour class can be defined as:

Colour colour_space value = class {}
A1 = Colour "sRGB" [255,0,0];

There are two ways to change A1. You can open A1 and
change colour space to "Lab", or you can double-
click on the swatch and drag the disc. When you click
OK on the colour edit dialog, nip2 searches for a mem-
ber called Colour edit, fails to find it, and so picks
the Colour member instead (the default constructor
generated by nip2). It then replaces the value of A1
with

[needs finishing]

6.12.3 The Image class
.

say supports mioxed ops with real, vector and com-
plex constants

6.12.4 The Colour class
This class displays a swatch of colour. If you double-
click on the

Pathname caption value = class {}

6.13 The Object class

6.14 Optimisation
nip2 performs three useful optimisations on expres-
sions. First, it finds and removes common sub-
expressions in functions. So for example:

if a + b < 12 then a + b else b

will only evaluate a + b once. This can save a lot of
time if a or b is a large image.

Second, nip2 detects arithmetic operations on
unsigned char images, and replaces them with
look-up tables. For example:

a = vips_image "campin.v"
b = a * (a - 1) ** 0.5

Provided campin.v is an 8 bit image image,
this expression will evaluate with a single call to
im maplut().

Finally, nip2 has a VIPS operation cache. It mem-
orises the arguments to the last few hundred calls to
VIPS, and the result each call gave. Before calling VIPS
again, it checks to see if there is a previous call with the
same arguments and if there is, uses the result it ob-
tained last time.

6.15 Calling VIPS functions
You can call any VIPS operation which has the follow-
ing properties:

• There must be at least 1 output argument. If there’s
a single output argument, that becomes the value
of the function. If there is more than one output,
then the function returns a list with the outputs as
members.

• The output arguments must all be one of:

– IM_TYPE_DOUBLE,

– IM_TYPE_INT,

– IM_TYPE_COMPLEX,

– IM_TYPE_STRING,

– IM_TYPE_IMAGE,

– IM_TYPE_DOUBLEVEC,

November 2009 45

CHAPTER 6. PROGRAMMING nip2 Manual

Class Description
Clock interval value A clock widget, handy for animations
Expression caption expr Displays an editable expression
Group value A group of objects for iteration
List value A list of related objects
Pathname caption value Displays a file browser
Fontname caption value Displays a font browser
Toggle caption value A toggle switch
Scale caption from to value A slider
Option caption labels value Select one item from a list
Colour colour space value A patch of colour
Matrix vips value scale offset filename display A matrix
Arrow image left top width height Two points joined by a line on an image
Region image left top width height A sub-area of an image
Plot options value Displays a plot widget
Image value An image
Number caption value Displays an editable number
Real value Displays a real number
Vector value Displays a list of reals
String caption value Displays an editable string
Mark image left top A point on an image
HGuide image top A horizontal line on an image
VGuide image left A vertical line on an image
Area image left top width height A sub-area of an image, fixed in size

Table 6.5: nip2 built in graphic classes

46 November 2009

nip2 Manual CHAPTER 6. PROGRAMMING

– IM_TYPE_DMASK,

– IM_TYPE_IMASK

• The input arguments must all be one of the types
above, or IM_TYPE_DISPLAY. If an argument is
an input display, nip2 passes in its current display
structure, it does not take a display from your pro-
gram.

When nip2 starts up, it loads any VIPS plug ins it
can find on its data search path. You can call functions
from plug ins in just the same way. For information on
writing plug ins, see the VIPS Manual.

November 2009 47

CHAPTER 6. PROGRAMMING nip2 Manual

48 November 2009

Appendix A

Configuration

Click on the Edit / Preferences to see all the
preference options. There are a lot of things you can
change (probably too many). This section will list the
most important.

A.0.1 Calculation
This column has the options which control how nip2
starts and how and when it calculates.

Data path This is a list of directories where nip2
searches for data files. These are any files that
nip2 can use but which aren’t loaded at startup.
I usually append the main areas on my machine
where I store image files, for example.

The default value is
["$HOME/.$PACKAGE-$VERSION/data",
"$VIPSHOME/share/nip/data", "."].

Temporary files This is where any intermediate
files will be stored. It defaults to a directory called
tmp under your home area’s .nip2-xx directory.
If nip crashes, it may leave old files here.

Start path This lists directories which are
searched when nip2 starts for any loadable files.
Anything that nip2 comes across will be loaded
up.

The default value is
["$HOME/.$PACKAGE-$VERSION/start",
"$VIPSHOME/share/nip/start"].

Auto-recalc With this on (the default) nip2 will
recalculate whenever anything changes. Turn this
off if recalculations are taking a long time and you
want to make a series of small changes.

Update sliders during drag This sets
whether recalculation happens as sliders are
dragged, or whether the recalculation waits until
the drag finishes. There’s a similar setting for
regions.

Auto workspace save With this tured on (the de-
fault) nip2 will save the current workspace to the
temporary files area a second after the last recalcu-
lation. If nip2 crashes, you can restart it and click
File / Search for Workspace Backups
and nip2 will reload the last workspace where
you made a change.

Auto-reload on file change With this
turned on nip2 will automatically reload any
image files that change while it has them open.
Handy if you’re using nip2 to watch a file that
another program is updating.

Maximum text display This sets the number of
characters nip2 shows for string values. Turn it
up if you want to see inside long strings.

Maximum heap This sets the limit on the heap size.
Turn it up if you start getting Heap full er-
ror messages. If you left-click on the space free
label in the bottom right of the main window, it
will change to display the current heap statistics.
There’s a useful tooltip as well.

Number of CPUs to use If you have a machine
with more than one CPU, you can make nip2
faster by upping this number.

49

APPENDIX A. CONFIGURATION nip2 Manual

A.0.2 Image display
This set of options control the default image display
window settings. Useful if you’re always having to turn
the status bar on (for example). The maximum size op-
tion is handy if you’re using nip2 on a machine with a
small display.

The Auto popup option makes nip2 pop up an
image display window automatically whenever you
make a new image object.

A.0.3 Other options
Other areas of preferences are less useful.

Display LEDs If you’re using a theme which uses
bitmaps for widgets, you won’t be able to see the
button colour changes nip2 usually uses to indi-
cate state. This option adds three small LEDs to
each row which indicate select, busy and error.

Default image format By default nip2 file
browsers show only VIPS images. If you find you
mostly use (for example) JPEG images, you’ll save
yourself a few clicks on every file operation by
switching this option to JPEG format.

Image format options You can set the save options for
the various image formats.

Video for linux If you running Linux and have a cap-
ture card that supports the V4L interface, you can
capture straight from the card into nip2. Set the
capture options here.

Paintbox The paintbox normally tracks all undo opera-
tions. This can chew up a lot of memory, especially
for flood fills. Reduce the number of undo steps to
free up some RAM.

50 November 2009

