
 Catalyst Development Corporation

www.catalyst.com

An Introduction to TCP/IP Programming
with SocketWrench Freeware Edition

Copyright 1995-2005, Catalyst Development Corporation. All rights reserved.
SocketWrench and SocketTools is a trademark of Catalyst Development Corporation.
Microsoft is a registered trademark, and Windows and Visual Basic are trademarks of Microsoft Corporation.

http://www.catalyst.com/

 General Overview

With the acceptance of TCP/IP as a standard platform-independent network
protocol, and the explosive growth of the Internet, the Windows Sockets API
(application program interface) has emerged as the standard for network
programming in the Windows environment. This document will introduce the
basic concepts behind Windows Sockets programming and get you started with
your first application created with SocketWrench. The tutorial section of this
document requires that that the reader be familiar with Visual Basic and has
installed the SocketWrench Freeware Edition control.

The SocketWrench Freeware Edition is the most popular, freely available
Internet control for Microsoft Windows. For developers who are new to Internet
software development, SocketWrench greatly reduces the learning curve
typically associated with network programming and enables developers to
quickly build client and server applications. Included in the Freeware Edition is
the SocketWrench Windows Sockets control for network programming, the
Remote Access Dialer control for establishing dial-up networking connections to
service providers, and a file encoding/decoding control which supports the
uucode, base64 and quoted-printable formats. The Freeware Edition is ideal for
students, hobbyists and programmers who are new to Internet software
development.

The SocketWrench Secure Edition is a new, commercial release of
SocketWrench that supports standard and secure (SSL/TLS) network
connections. The Secure Edition is a complete rewrite of the control, making
Windows Sockets programming even easier than before. Designed for the
professional commercial software developer, the Secure Edition is optimized for
32-bit platforms and implements secure protocols with support for up to 128-
bit encryption. This new release includes both ActiveX controls, standard
dynamic link libraries (DLLs) and C++ class wrappers in the same package,
along with new samples and over 400 pages of documentation. For
professional developers, the SocketWrench Secure Edition provides all of the
features, documentation and technical support needed to develop complete
Internet applications, without the complexities of learning the Windows Sockets
API or working around the limitations of other Internet controls.

The SocketTools Visual and Library Editions provide a complete collection
of controls and libraries for many of the popular Internet application protocols
such as FTP, POP3, SMTP and HTTP. Secure editions of these components are
also available that support both standard and secure (SSL/TLS) network
connections. You'll find the same features, functionality and stability in the
SocketTools package without having to learn how to implement complex
application protocols or decipher cryptic standards documents. With

SocketWrench Tutorial Page 2

SocketTools, adding features like file transfer, sending and retrieving e-mails,
and accessing web pages can be done in just a few minutes. Instead of
reinventing the wheel, you can spend your time working on your core
application and increasing your productivity without sacrificing the features
that your users expect.

To learn more about the SocketWrench Secure Edition and SocketTools family
of products, please visit the Catalyst Development website at www.catalyst.com

SocketWrench Tutorial Page 3

http://www.catalyst.com/

 Windows Sockets API

The Windows Sockets specification was created by a group of companies,
including Microsoft, in an effort to standardize the TCP/IP suite of protocols
under Windows. Prior to Windows Sockets, each vendor developed their own
proprietary libraries, and although they all had similar functionality, the
differences were significant enough to cause problems for the software
developers that used them. The biggest limitation was that, upon choosing to
develop against a specific vendor’s library, the developer was "locked" into that
particular implementation. A program written against one vendor’s product
would not work with another’s. Windows Sockets was offered as a solution,
leaving developers and their end-users free to choose any vendor’s
implementation with the assurance that the product will continue to work.

There are two general approaches that you can take when creating a program
that uses Windows Sockets. One is to code directly against the API. The other
is to use a component which provides a higher-level interface to the library by
setting properties and responding to events. This can provide a more "natural"
programming interface, and it allows you to avoid much of the error-prone
drudgery commonly associated with sockets programming. By including the
control in a project, setting some properties and responding to events, you can
quickly and easily write an Internet-enabled application. And because of the
nature of custom controls in general, the learning curve is low and
experimentation is easy. SocketWrench provides a comprehensive interface to
the Windows Sockets library and will be used to build a simple client-server
application in the next section of this document. Before we get started with the
control, however, we’ll cover the basic terminology and concepts behind
sockets programming in general.

SocketWrench Tutorial Page 4

 Transmission Control Protocol

When two computers wish to exchange information over a network, there are
several components that must be in place before the data can actually be sent
and received. Of course, the physical hardware must exist, which is typically
either a network interface card (NIC) or a serial communications port for dial-
up networking connections. Beyond this physical connection, however,
computers also need to use a protocol which defines the parameters of the
communication between them. In short, a protocol defines the "rules of the
road" that each computer must follow so that all of the systems in the network
can exchange data. One of the most popular protocols in use today is TCP/IP,
which stands for Transmission Control Protocol/Internet Protocol.

By convention, TCP/IP is used to refer to a suite of protocols, all based on the
Internet Protocol (IP). Unlike a single local network, where every system is
directly connected to each other, an internet is a collection of networks,
combined into a single, virtual network. The Internet Protocol provides the
means by which any system on any network can communicate with another as
easily as if they were on the same physical network. Each system, commonly
referred to as a host, is assigned a unique 32-bit number which can be used to
identify it over the internetwork. Typically, this address is broken into four 8-
bit numbers separated by periods. This is called dot-notation, and looks
something like "192.43.19.64". Some parts of the address are used to identify
the network that the system is connected to, and the remainder identifies the
system itself. Without going into the minutia of the Internet addressing
scheme, just be aware that there are three "classes" of addresses, referred to
as "A", "B" and "C". The rule of thumb is that class "A" addresses are assigned
to very large networks, class "B" addresses are assigned to medium sized
networks, and class "C" addresses are assigned to smaller networks (networks
with less than approximately 250 hosts).

When a system sends data over the network using the Internet Protocol, it is
sent in discrete units called datagrams, also commonly referred to as packets.
A datagram consists of a header followed by application-defined data. The
header contains the addressing information which is used to deliver the
datagram to it’s destination, much like an envelope is used to address and
contain postal mail. And like postal mail, there is no guarantee that a datagram
will actually arrive at it’s destination. In fact, datagrams may be lost,
duplicated or delivered out of order during their travels over the network.
Needless to say, this kind of unreliability can cause a lot of problems for
software developers. What’s really needed is a reliable, straight-forward way to
exchange data without having to worry about lost packets or jumbled data.

To fill this need, the Transmission Control Protocol (TCP) was developed. Built

SocketWrench Tutorial Page 5

on top of IP, TCP offers a reliable, full-duplex byte stream which may be read
and written to in a fashion similar to reading and writing a file. The advantages
to this are obvious: the application programmer doesn’t need to write code to
handle dropped or out-of-order datagrams, and instead can focus on the
application itself. And because the data is presented as a stream of bytes,
existing code can be easily adopted and modified to use TCP.

TCP is known as a connection-oriented protocol. In other words, before two
programs can begin to exchange data they must establish a "connection" with
each other. This is done with a three-way handshake in which both sides
exchange packets and establish the initial packet sequence numbers (the
sequence number is important because, as mentioned above, datagrams can
arrive out of order; this number is used to ensure that data is received in the
order that it was sent). When establishing a connection, one program must
assume the role of the client, and the other the server. The client is responsible
for initiating the connection, while the server’s responsibility is to wait, listen
and respond to incoming connections. Once the connection has been
established, both sides may send and receive data until the connection is
closed.

SocketWrench Tutorial Page 6

 User Datagram Protocol

Unlike TCP, the User Datagram Protocol (UDP) does not present data as a
stream of bytes, nor does it require that you establish a connection with
another program in order to exchange information. Data is exchanged in
discrete units called datagrams, which are similar to IP datagrams. In fact, the
only features that UDP offers over raw IP datagrams are port numbers and an
optional checksum.

UDP is sometimes referred to as an unreliable protocol because when a
program sends a UDP datagram over the network, there is no way for it to
know that it actually arrived at it’s destination. This means that the sender and
receiver must typically implement their own application protocol on top of UDP.
Much of the work that TCP does transparently (such as generating checksums,
acknowledging the receipt of packets, retransmitting lost packets and so on)
must be performed by the application itself.

With the limitations of UDP, you might wonder why it’s used at all. UDP has the
advantage over TCP in two critical areas: speed and packet overhead. Because
TCP is a reliable protocol, it goes through great lengths to insure that data
arrives at it’s destination intact, and as a result it exchanges a fairly high
number of packets over the network. UDP doesn’t have this overhead, and is
considerably faster than TCP. In those situations where speed is paramount, or
the number of packets sent over the network must be kept to a minimum, UDP
is the solution.

SocketWrench Tutorial Page 7

 Hostnames

In order for an application to send and receive data with a remote process, it
must have several pieces of information. The first is the IP address of the
system that the remote program is running on. Although this address is
internally represented by a 32-bit number, it is typically expressed in either
dot-notation or by a logical name called a hostname. Like an address in dot-
notation, hostnames are divided into several pieces separated by periods,
called domains. Domains are hierarchical, with the top-level domains defining
the type of organization that network belongs to, with sub-domains further
identifying the specific network.

In this figure, the top-level domains are "gov" (government agencies),
"com" (commercial organizations), "edu" (educational institutions) and
"net" (Internet service providers). The fully qualified domain name is specified
by naming the host and each parent sub-domain above it, separating them
with periods. For example, the fully qualified domain name for the "jupiter"
host would be "jupiter.catalyst.com". In other words, the system "jupiter" is
part of the "catalyst" domain (a company’s local network) which in turn is part
of the "com" domain (a domain used by all commercial enterprises).

In order to use a hostname instead of a dot-address to identify a specific
system or network, there must be some correlation between the two. This is
accomplished by one of two means: a local host table or a name server. A host
table is a text file that lists the IP address of a host, followed by the names
that it’s known by. Typically this file is named hosts and is found in the same
directory in which the TCP/IP software has been installed. A name server, on
the other hand, is a system (actually, a program running on a system) which
can be presented with a hostname and will return that host’s IP address. This
approach is advantageous because the host information for the entire network
is maintained in one centralized location, rather than being scattered about on
every host on the network.

SocketWrench Tutorial Page 8

 Service Ports

In addition to the IP address of the remote system, an application also needs
to know how to address the specific program that it wishes to communicate
with. This is accomplished by specifying a service port, a 16-bit number that
uniquely identifies an application running on the system. Instead of numbers,
however, service names are usually used instead. Like hostnames, service
names are usually matched to port numbers through a local file, commonly
called services. This file lists the logical service name, followed by the port
number and protocol used by the server.

A number of standard service names are used by Internet-based applications
and these are referred to as well-known services. These services are defined by
a standards document and include common application protocols such as FTP,
POP3, SMTP and HTTP.

Remember that a service name or port number is a way to address an
application running on a remote host. Because a particular service name is
used, it doesn’t guarantee that the service is available, just as dialing a
telephone number doesn’t guarantee that there is someone at home to answer
the call.

SocketWrench Tutorial Page 9

 Sockets

The previous sections described what information a program needs to
communicate over a TCP/IP network. The next step is for the program to
create what is called a socket, a communications end-point that can be likened
to a telephone. However, creating a socket by itself doesn’t let you exchange
information, just like having a telephone in your house doesn’t mean that you
can talk to someone by simply taking it off the hook. You need to establish a
connection with the other program, just as you need to dial a telephone
number, and to do this you need the socket address of the application that you
want to connect to. This address consists of three key parts: the protocol
family, Internet Protocol (IP) address and the service port number.

We’ve already talked about the IP address and service port, but what’s the
protocol family? It’s a number which is used to logically designate the group
that a given protocol belongs to. Since the socket interface is general enough
to be used with several different protocols, the protocol family tells the
underlying network software which protocol is being used by the socket. In our
case, the Internet Protocol family will always be used when creating sockets.
With the protocol family, IP address of the system and the service port number
for the program that you want to exchange data with, you’re ready to establish
a connection.

SocketWrench Tutorial Page 10

 Client-Server Applications

Programs written to use TCP are developed using the client-server model. As
mentioned previously, when two programs wish to use TCP to exchange data,
one of the programs must assume the role of the client, while the other must
assume the role of the server. The client application initiates what is called an
active open. It creates a socket and actively attempts to connect to a server
program. On the other hand, the server application creates a socket and
passively listens for incoming connections from clients, performing what is
called a passive open. When the client initiates a connection, the server is
notified that some process is attempting to connect with it. By accepting the
connection, the server completes what is called a virtual circuit, a logical
communications pathway between the two programs. It’s important to note
that the act of accepting a connection creates a new socket; the original socket
remains unchanged so that it can continue to be used to listen for additional
connections. When the server no longer wishes to listen for connections, it
closes the original passive socket.

To review, there are five significant steps that a program which uses TCP must
take to establish and complete a connection. The server side would follow
these steps:

1. Create a socket.
2. Listen for incoming connections from clients.
3. Accept the client connection.
4. Send and receive information.
5. Close the socket when finished, terminating the conversation.

In the case of the client, these steps are followed:

1. Create a socket.
2. Specify the address and service port of the server program.
3. Establish the connection with the server.
4. Send and receive information.
5. Close the socket when finished, terminating the conversation.

Only steps two and three are different, depending on if it’s a client or server
application.

SocketWrench Tutorial Page 11

 Blocking vs. Non-Blocking Sockets

One of the first issues that you’ll encounter when developing your Windows
Sockets applications is the difference between blocking and non-blocking
sockets. Whenever you perform some operation on a socket, it may not be able
to complete immediately and return control back to your program. For
example, a read on a socket cannot complete until some data has been sent by
the remote host. If there is no data waiting to be read, one of two things can
happen: the function can wait until some data has been written on the socket,
or it can return immediately with an error that indicates that there is no data to
be read.

The first case is called a blocking socket. In other words, the program is
"blocked" until the request for data has been satisfied. When the remote
system does write some data on the socket, the read operation will complete
and execution of the program will resume. The second case is called a non-
blocking socket, and requires that the application recognize the error condition
and handle the situation appropriately. Programs that use non-blocking sockets
typically use one of two methods when sending and receiving data. The first
method, called polling, is when the program periodically attempts to read or
write data from the socket (typically using a timer). The second, and preferred
method, is to use what is called asynchronous notification. This means that the
program is notified whenever a socket event takes place, and in turn can
respond to that event. For example, if the remote program writes some data to
the socket, a "read event" is generated so that program knows it can read the
data from the socket at that point.

For historical reasons, the default behavior is for socket functions to "block"
and not return until the operation has completed. However, blocking sockets in
Windows can introduce some special problems. For 16-bit applications, the
blocking function will enter what is called a "message loop" where it continues
to process messages sent to it by Windows and other applications. Since
messages are being processed, this means that the program can be re-entered
at a different point with the blocked operation parked on the program's stack.
For example, consider a program that attempts to read some data from the
socket when a button is pressed. Because no data has been written yet, it
blocks and the program goes into a message loop. The user then presses a
different button, which causes code to be executed, which in turn attempts to
read data from the socket, and so on.

Blocking socket functions can introduce a different type of problem in 32-bit
applications because blocking functions will prevent the calling thread from
processing any messages sent to it. Since many applications are single-
threaded, this can result in the application being unresponsive to user actions.

SocketWrench Tutorial Page 12

To resolve the general problems with blocking sockets, the Windows Sockets
standard states that there may only be one outstanding blocked call per thread
of execution. This means that 16-bit applications that are re-entered (as in the
example above) will encounter errors whenever they try to take some action
while a blocking function is already in progress. With 32-bit programs, the
creation of worker threads to perform blocking socket operations is a common
approach, although it introduces additional complexity into the application.

It should be noted that there are advantages to using blocking sockets. In
most cases, the application design and implementation is simpler, and raw
throughput (the rate at which data is sent and received) is generally higher
with blocking sockets because it does not have to go through an event
mechanism to notify the application of a change in status. In general, if your
application is designed as a client, and does not have the need to establish
multiple simultaneous connections then blocking sockets may be appropriate.
However, if your application functions as a server or needs to establish multiple
connections then an asynchronous, event-driven design is more appropriate.

The SocketWrench control facilitates the use of non-blocking sockets by firing
events when appropriate. For example, a Read event is generated whenever
the remote host writes on the socket, which tells your application that there is
data waiting to be read. The use of non-blocking sockets will be demonstrated
in the next section, and is one of the key areas in which a control has a distinct
advantage over coding directly against the Windows Sockets API.

In summary, there are three general approaches that can be taken when
building an application with the control in regard to blocking or non-blocking
sockets:

● Use a blocking (synchronous) socket. In this mode, the program will not
resume execution until the socket operation has completed. This method
is only recommended for relatively small applications. Blocking sockets in
16-bit application will allow it to be re-entered at a different point, and
32-bit applications will stop responding to user actions. Blocking sockets
can lead to complex interactions (and difficult debugging) if there are
multiple active controls in use by the application.

● Use a non-blocking (asynchronous) socket, which allows your application
to respond to events. For example, when the remote system writes data
to the socket, a Read event is generated for the control. Your application
can respond by reading the data from the socket, and perhaps send
some data back, depending on the context of the data received.

● Use a combination of blocking and non-blocking socket operations. The
ability to switch between blocking and non-blocking modes "on the fly"

SocketWrench Tutorial Page 13

provides a powerful and convenient way to perform socket operations.
Note that the warning regarding blocking sockets also applies here.

If you decide to use non-blocking sockets in your application, it’s important to
keep in mind that you must check the return value from every read and write
operation, since it is possible that you may not be able to send or receive all of
the specified data. Frequently, developers encounter problems when they write
a program that assumes a given number of bytes can always be written to, or
read from, the socket. In many cases, the program works as expected when
developed and tested on a local area network, but fails unpredictably when the
program is released to a user that has a slower network connection (such as a
serial dial-up connection to the Internet). By always checking the return values
of these operations, you insure that your program will work correctly,
regardless of the speed or configuration of the network.

2Fortunately blocked 32-bit applications do not prevent other programs from running, as is the
case with 16-bit platforms such as Windows 3.1.

SocketWrench Tutorial Page 14

 SocketWrench Freeware Edition

The SocketWrench Freeware Edition is a completely free, general purpose
ActiveX control (OCX) which simplifies Windows Sockets programming. For
developers new to Internet software development, SocketWrench greatly
reduces the learning curve typically associated with network programming and
gives you all of the functionality you need to write both client and server
applications.

Because SocketWrench has a large number of properties, you might feel
overwhelmed when you start reading through the technical reference material.
Don’t worry -- you only need to understand how to use a handful of properties
and events to get started. Once you’ve become more comfortable and
knowledgeable about sockets programming, you’ll appreciate the power and
flexibility that SocketWrench gives you.

Each control that you use corresponds to one socket, which may or may not be
connected to a remote host. If you need access to multiple sockets, you must
use multiple controls, typically as a control array. This is most commonly
needed when your application acts as a server and must be able to handle
several connections at one time.

SocketWrench Tutorial Page 15

 System Requirements

The SocketWrench Freeware Edition control requires Microsoft Windows 95 or
later, Visual Basic 4.0 or later and networking software that supports the
Windows Sockets 1.1 specification. The ActiveX control should be placed in the
System directory under Windows 95, or the System32 directory under
Windows NT.

Windows 95 and Windows NT both have TCP/IP software included with the
operating system. Both local and dial-up networks are supported, with dial-up
networking installed as part of the Windows Remote Access Services
subsystem. If you are using Windows 95, it is recommended that you obtain
the Dial-Up Networking 1.2 update which includes a number of enhancements
to the product. You can obtain further information about this update by
searching the Knowledge Base on the Microsoft website.

SocketWrench Tutorial Page 16

 SocketWrench Echo Client

In this section of the tutorial, we will create a simple program that can be used
to connect with an echo server, a server which echoes back any data that’s
sent to it. Later on, we’ll also cover how to implement your own echo server.

The first step, after starting Visual Basic, is to include the SocketWrench
control in your new project. In Visual Basic 3.0, select the File|Add File option
from the menu and a file selection dialog will be displayed. Enter the complete
pathname of the control, such as c:\windows\system\cswskctl.vbx. To add the
control to the list of available controls, click on the Browse button and enter
the complete pathname of the control. In Visual Basic 4.0, you should select
Tools|Custom Controls, while in Visual Basic 5.0 and Visual Basic 6.0, you
should select Project|Components. A dialog will display all of the available
ActiveX controls, then select the Catalyst SocketWrench Control.

After the control has been added to the tool palette, you will also need to
include some constants used by SocketWrench into your application. These can
be defined in your form, or in another module. For a list of the constants that
you can use, go to the SAMPLES directory and select the CONSTANTS.TXT file
that is appropriate for your version of Visual Basic. You can copy the entire file
into your project if you wish.

To begin, you’ll need to create a form that has three labels, three text controls,
a button and the SocketWrench control. The form might look something like
this:

SocketWrench Tutorial Page 17

When executed, the user will enter the name or IP address of the system in the
Text1 control, the text that is to be echoed in the Text2 control, and the
server’s reply will be displayed in the Text3 control. The Command1 button will
be used to establish a connection with the remote server. The Text2 and Text3
controls should be created with their Enabled properties initially set to False.

SocketWrench Tutorial Page 18

 Essential Properties

Some essential properties of the SocketWrench control, called Socket1, need to be
initialized. The best place to do this is in the form’s Load subroutine. The code should
look like this3:

Private Sub Form_Load()
 Socket1.AddressFamily = AF_INET
 Socket1.Protocol = IPPROTO_IP
 Socket1.SocketType = SOCK_STREAM
 Socket1.Binary = False
 Socket1.Blocking = False
 Socket1.BufferSize = 1024
End Sub

These six properties should be set for every instance of the SocketWrench control:

AddressFamily This property is part of the socket address, and should always
be set to a value of AF_INET, which is global constant with the
integer value of 2.

Protocol This property determines which protocol is going to be used to
communicate with the remote application. Most commonly, the
value IPPROTO_IP is used, which means that the protocol
appropriate for the socket type will be used.

SocketType This property specifies the type of socket that is to be created.
It may be either of type SOCK_STREAM or SOCK_DGRAM. The
stream-based socket uses the TCP protocol, and data is read
and written on the socket as a stream of bytes, similar to how
data in a file is accessed. The datagram-based socket uses the
UDP protocol, and data is read and written in discrete units
called datagrams. Most sockets that you will create will be of
the stream variety.

Binary This property determines how data should be read from the
socket. If set to a value of True, then the data is received
unmodified. If set to False, the data is interpreted as text, with
the carriage return and linefeed characters stripped from the
data stream. Each receive returns exactly one line of text.

BufferSize This property is used only for stream-based (TCP) sockets. It
specifies the amount of memory, in bytes, that should be
allocated for the socket’s send and receive buffers.

SocketWrench Tutorial Page 19

Blocking This property specifies if the application should wait for a
socket operation to complete before continuing. By setting this
property to False, that indicates that the application will not
wait for the operation to complete, and instead will respond to
events generated by the control. This is the recommended
approach to take when designing your application.

3The code examples shown here use keywords like Private which are used in Visual Basic 4.0 and later. If
you are using an earlier version of Visual Basic, these keywords should be ignored.

SocketWrench Tutorial Page 20

 Establishing a Connection

The next step is to establish a connection with the echo server. This is done by including
code in the Command1 button’s Click event. The code should look like this:

Private Sub Command1_Click()

 On Error GoTo Failed
 Socket1.HostName = Trim$(Text1.Text)
 Socket1.RemotePort = IPPORT_ECHO
 Socket1.Action = SOCKET_CONNECT
 Exit Sub

Failed:
 MsgBox "Unable to connect to remote host"
 Exit Sub

End Sub

The Text1 edit control should contain the name or IP address of a system that has an
echo server running (most UNIX and Windows NT based systems do have such a server).
The properties which have been used to establish the connection are:

HostName This property should be set to either the host name of the
system that you want to connect to, or it’s IP address in dot-
notation.

RemotePort This property should be set to the number of the port which
the remote application is listening on. Port numbers below
1024 are considered reserved by the system. In this example,
the echo server port number is 7, which is specified by using
the global constant IPPORT_ECHO.

Action This property initiates some action on the socket. The
SOCKET_CONNECT action tells the control to establish a
connection using the appropriate properties that have been
set. A related action, SOCKET_CLOSE, instructs the control to
close the connection, terminating the conversation with the
remote server.

Both HostName and RemotePort are known as reciprocal properties. This means that by
changing the property, another related property will also change to match it. For
example, when you assign a value to the HostName property, the control will determine
it’s IP address and automatically set the HostAddress property to the correct value. The
reciprocal property for RemotePort is the RemoteService property. For more information
about these properties, refer to the Technical Reference section.

SocketWrench Tutorial Page 21

When using the ActiveX controls, an alternative to setting the Action property is to use
the Connect method. This method performs the same function, but would be called like
this:

Private Sub Command1_Click()

 Socket1.HostName = Trim$(Text1.Text)
 Socket1.RemotePort = IPPORT_ECHO

 If Socket1.Connect() <> 0 Then
 MsgBox "Unable to connect to remote host"
 Exit Sub
 End If

End Sub

This demonstrates one of the principal differences between using the Action property and
using the methods in the ActiveX controls. When you set the Action property and an
error occurs, a Visual Basic error is generated which causes any error trapping code to
be executed. However, calling a method in the control will not generate a Visual Basic
error if the method fails. Instead, the error code is returned by the method, and the
application is responsible for handling that error condition.

Because the socket is non-blocking (i.e.: the Blocking property has been set to a value of
False), the program will not wait for the connection to be established. Instead, it will
return immediately and respond to the Connect event in the SocketWrench control. The
code for that event should look like this:

Private Sub Socket1_Connect()
 Text2.Enabled = True
 Text3.Enabled = True
End Sub

This tells the application that when a connection has been established, enable the edit
controls so that the user can send and receive information from the server.

SocketWrench Tutorial Page 22

 Sending and Receiving Data

Now that the code to establish the connection has been written, the next step is to
actually send and receive data to and from the server. To do this, the Text2 control
should have the following code added to it’s KeyPress event:

Private Sub Text2_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then
 Socket1.SendLen = Len(Text2.Text)
 Socket1.SendData = Text2.Text
 KeyAscii = 0: Text2.Text = ""
 End If
End Sub

If the user presses the Enter key in the Text2 control, then that text is sent down to the
echo server. The properties used to send data are as follows:

SendLen This property specifies the length of the data being sent to the
server. It should always be set before the data is written to the
socket. After the data has been sent, the value of the property
is adjusted to indicate the actual number of bytes that have
been written.

SendData Setting this property causes the data assigned to it to be
written to the socket. The number of bytes actually written
may be less than the amount specified in the SendLen
property if the socket buffers become full.

When using ActiveX controls, as with the Action property, there is a method called Write
which can be used instead of the SendLen and SendData properties. The Write
method has two arguments, the string buffer to write to the socket and the number of
bytes to write. For example, the code would look like this:

Private Sub Text2_KeyPress(KeyAscii As Integer)
 Dim strText As String
 If KeyAscii = 13 Then
 strText = Text2.Text
 Socket1.Write strText, Len(strText)
 KeyAscii = 0: Text2.Text = ""
 End If
End Sub

Because we have connected to the echo service, once the data has been sent to the
remote host, it immediately sends the data back to the client. This generates a Read
event in SocketWrench, which should have the following code:

Private Sub Socket1_Read (DataLength As Integer, IsUrgent As

SocketWrench Tutorial Page 23

Integer)
 Socket1.RecvLen = DataLength
 Text3.Text = Socket1.RecvData
End Sub

The properties used to receive the data are as follows:

RecvLen This property specifies the maximum number of bytes that
should be read from the socket. After the data has been
received, the value is changed to reflect the number of bytes
actually read.

RecvData Reading this property causes data to be read from the socket,
up to the maximum number of bytes specified by the RecvLen
property. If the socket is non-blocking and there is no data to
be read, an error is generated.

When using ActiveX controls, the Read method can be used instead of the RecvLen and
RecvData properties. The method has two arguments, the string buffer to copy the data
into and the number of bytes to read from the socket. For example, the code would look
like this:

Private Sub Socket1_Read(DataLength As Integer, IsUrgent As
Integer)
 Dim strBuffer As String
 Socket1.Read strBuffer, DataLength
 Text3.Text = strBuffer
End Sub

The Read event is passed two parameters, the number of bytes that are available to be
read, and a flag that specifies if the data is urgent (also known as "out-of-band" data,
the use of urgent data is an advanced topic outside of the scope of this document). For
more information about the Read event, please refer to the Technical Reference section.

SocketWrench Tutorial Page 24

 Closing the Connection

The last piece of code to add to the sample is to handle closing the socket when
the program is terminated by selecting Close on the system menu. The best
place to put socket cleanup code is in the form’s Unload event, such as:

Sub Form_Unload (Cancel As Integer)
 If Socket1.Connected Then Socket1.Action = SOCKET_CLOSE
 End
End Sub

This should be rather self-explanatory. The only new property that has been
introduced is the Connected property, which is a boolean flag. If it is True, then a
connection has been established. With all of the properties and event code
needed for the sample client application completed, all that’s left to do is run the
program! Of course, in a real application you’d need to provide extensive error
checking. SocketWrench errors start at 24,000 and correspond to the error codes
used by the Windows Sockets library. Most errors will occur when setting the
host name, address, service port or Action property.

SocketWrench Tutorial Page 25

 SocketWrench Echo Server

In this section of the tutorial, you will implement your own echo server. To
accomplish this, we’ll modify the client application to function as a server as
well. The side benefit is that this will allow you to test both the client and
server application on your local system.

Remember that the first thing that a server application must do is listen on a
local port for incoming connections. You know that an application is attempting
to connect with you when the Accept event is generated for the SocketWrench
control. There are two methods which you can use to accept an incoming
connection: set the Action property to the value SOCKET_ACCEPT, or set the
Accept property.

Setting the Action property is the simplest of the two methods. As you’ll recall,
the act of accepting a connection causes a second socket to be created. The
original listening socket continues to listen for more connections, while the
second socket can be used to communicate with the client that connected to
you. When you set the Action property to SOCKET_ACCEPT, what you’re telling
the control to do is to close the original listening socket, and from that point
on, the control can be used to communicate with the client. While this is
convenient, it is also limiting -- since the listening socket has been closed, no
more clients can connect with your program, effectively limiting it to a single
client connection.

The more flexible approach is to set the Accept property to the value passed as
an argument to the Accept event. However, this cannot be done by the control
that is listening for connections because it is in use. You have to use another,
unused control to accept the connection. The problem is, how many clients are
going to attempt to connect to you? Of course, you could drop a fixed number
of SocketWrench controls on your form, thereby limiting the number of
connections, but that’s not a very good design. The better approach is to
create a control array which can be dynamically loaded when a connection is
attempted by a client, and unloaded when the connection is closed. This is the
approach that we’ll take in our server code sample.

SocketWrench Tutorial Page 26

 Initializing the Server

The first thing to do is to add a second SocketWrench control to your form, and
make it a control array. Initially there will only be one control in the array,
identified as Socket2(0). This control will be responsible for listening for client
connections. Just as with the client socket control, several of the control’s
properties should be initialized in the form’s Load subroutine. The new
subroutine should look like this:

Sub Form_Load ()
 Socket1.AddressFamily = AF_INET
 Socket1.Protocol = IPPROTO_IP
 Socket1.SocketType = SOCK_STREAM
 Socket1.Binary = False
 Socket1.BufferSize = 1024
 Socket1.Blocking = False

 Socket2(0).AddressFamily = AF_INET
 Socket2(0).Protocol = IPPROTO_IP
 Socket2(0).SocketType = SOCK_STREAM
 Socket2(0).Blocking = False
 Socket2(0).LocalPort = IPPORT_ECHO
 Socket2(0).Action = SOCKET_LISTEN
 LastSocket = 0
End Sub

The only thing that is new here is the LocalPort property and the LastSocket
variable. The LocalPort property is used by server applications to specify the
local port that it’s listening on for connections. By specifying the standard port
used by echo servers, any other system can connect to yours and expect the
program to echo back whatever is sent to it.

The LastSocket variable is defined in the general section of the Visual Basic
application as an integer. It is used to keep track of the next index value that
can be used in the control array.

SocketWrench Tutorial Page 27

 Listening for Connections

By setting the Action property to SOCKET_LISTEN in the form’s Load event, the program
will start listening for connections as soon as the program starts executing. When a client
tries to connect with your server, Socket2’s Accept event will fire. The code for this event
should look like this:

Private Sub Socket2_Accept(Index As Integer, SocketId As Integer)
 Dim I As Integer
 For I = 1 To LastSocket
 If Not Socket2(I).Connected Then Exit For
 Next I
 If I > LastSocket Then
 LastSocket = LastSocket + 1: I = LastSocket
 Load Socket2(I)
 End If
 Socket2(I).AddressFamily = AF_INET
 Socket2(I).Protocol = IPPROTO_IP
 Socket2(I).SocketType = SOCK_STREAM
 Socket2(I).Binary = True
 Socket2(I).BufferSize = 1024
 Socket2(I).Blocking = False
 Socket2(I).Accept = SocketId
End Sub

The first statement loads a new instance of the SocketWrench control as part of the
Socket2 control array. The next six lines initialize the control’s properties, and then the
Accept property is set to the value of the SocketId parameter that is passed to the control.
After executing this statement, the control is now ready to start communicating with the
client program. Since it’s the job of an echo server to echo back whatever is sent to it, we
have to add code to the control’s Read event, which tells it that the client has sent some
data to us:

Private Sub Socket2_Read(Index As Integer, DataLength As Integer, _
 IsUrgent As Integer)
 Socket2(Index).RecvLen = DataLength
 Socket2(Index).SendLen = DataLength
 Socket2(Index).SendData = Socket2(Index).RecvData
End Sub

SocketWrench Tutorial Page 28

 Closing the Connection

Finally, when the client closes the connection, the socket control must also close it’s end of
the connection. This is accomplished by adding a line of code in the socket’s Disconnect
event:

Private Sub Socket2_Disconnect(Index As Integer)
 Socket2(Index).Action = SOCKET_CLOSE
End Sub

To make sure that all of the socket connections are closed when the application is
terminated, the following code should be included in the form’s Unload event:

Private Sub Form_Unload (Cancel As Integer)
 Dim I As Integer
 If Socket1.Connected Then Socket1.Action = SOCKET_CLOSE
 If Socket2(0).Listening Then Socket2(0).Action = SOCKET_CLOSE
 For I = 1 To LastSocket
 If Socket2(I).Connected Then Socket2(I).Action = SOCKET_CLOSE
 Next I
 End
End Sub

The only new property shown here is the Listening property, which like the Connected
property, is a boolean flag. If the control is listening for incoming connections, this property
will return True, otherwise it returns False. This is added only as an extra sanity check, and
the property should always return True for this instance of the control.

SocketWrench Tutorial Page 29

 Putting It All Together

This guide has introduces you to the basic concepts behind socket
programming and how to use SocketWrench to get started developing your
own Windows Sockets applications. Although the echo client and server sample
program is fairly basic, it does examine many of the key issues that you’ll
encounter when developing your own software.

Now is a good time to review the Technical Reference and the other sample
programs included in the package. The help file included with SocketWrench
also includes the complete technical reference, and can be accessed directly
within your development environment.

SocketWrench Tutorial Page 30

 SocketWrench Secure Edition

The SocketWrench Secure Edition is a commercial version of SocketWrench
that supports standard and secure (SSL/TLS) network connections. The Secure
Edition is a complete rewrite of the control, making Windows Sockets
programming even easier than before. Designed for the professional
commercial software developer, some of the new features are:

● Support for secure communications, allowing developers to create their
own custom secure client and server applications as well as connect to
standard secure servers.

● Implements the standard SSL 2.0 and 3.0 protocols, the TLS 1.0 protocol
and the PCT 1.0 protocol for secure communications, with support for up
to 128-bit encryption.

● Optimized for 32-bit platforms, the control and library has improved
performance and reliability with less overhead, reduced memory
requirements and higher overall throughput. SocketWrench is compatible
with all 32-bit Intel based Windows platforms from Windows 95 to
Windows XP.

● Improved interface allows developers to implement the same
functionality with fewer lines of code, which means fewer mistakes and
easier to read source code.

● Simplified distribution means that you only need to redistribute the
single SocketWrench component; there are no external third-party file
dependencies which can complicate installations on target platforms.

● Includes ActiveX controls, standard dynamic-link libraries (DLLs) and C+
+ class wrappers in the same package. SocketWrench can be used with
virtually any Windows software development tool.

● Over 400 pages of documentation, including a revised tutorial that
covers secure sockets programming and a new tutorial for building your
first client/server application using SocketWrench. Also includes a guide
to migrating applications which use the Freeware Edition control.

● New and revised sample programs to demonstrate how to use
SocketWrench, including a complete FTP client, secure HTTP client and
an HTTP server example.

For professional developers, the SocketWrench Secure Edition provides all of
the features, documentation and technical support needed to develop complete
Internet applications, without the complexities of learning the Windows Sockets
API or working around the limitations of other Internet controls.

For more information about the SocketWrench Secure Edition, visit the Catalyst
Development website at www.catalyst.com

SocketWrench Tutorial Page 31

http://www.catalyst.com/products/socketwrench/

SocketTools Visual Edition

The SocketTools Visual Edition includes ActiveX controls (OCXs) which can be used in a wide variety
of programming languages such as Visual Studio.NET, Visual C++ and Visual Basic. The Visual
Edition is ideal for the developer who requires the flexibility, ease of use and rapid development
features of a component without the complexities of working with the Windows Sockets API or in-
depth knowledge of how the various Internet protocols are implemented. The SocketTools Visual
Edition consists of fourteen core networking components which can be used to develop applications
that meet a wide range of needs. SocketTools covers it all, including uploading and downloading files,
sending and retrieving email, remote command execution, terminal emulation, and much more.

The SocketTools Secure Visual Edition also includes support for the industry standard Secure Sockets
Layer (SSL) and Transport Security Layer (TLS) protocols which are used to ensure that data
exchanged between the local system and a remote host is secure and encrypted. The Secure Editions
implement the major secure protocols such as HTTP, FTPS, SMTPS, POP3S, IMAPS and more. Your
data is protected by industrial strength 128-bit encryption, with full support for client certificates.
Using the popular SocketWrench control that is part of SocketTools, you can also write your own,
custom secure server applications. And there's no need for you to understand the details of certificate
management, data encryption or how the security protocols work. All it takes is a few lines of code to
enable the security features, and SocketTools handles the rest!

The following are just some of the features in the new SocketTools 4.5 Visual Edition:

● Standard ATL based ActiveX controls compatible with any COM compliant development tool
● Low resource utilization and no external dependencies on third-party libraries
● A comprehensive product with 18 controls and extensive documentation
● Fully compatible with Visual Studio.NET, including Visual Basic.NET and C#
● Includes both high level and lower level interfaces for maximum flexibility
● Support for both synchronous and asynchronous network connections
● Thread-safe implementation with full support for multithreaded applications
● Support for proxy servers, including secure proxies, using FTP and HTTP
● An extensive Developer's Guide and online Technical Reference
● A professional technical support staff and extensive online support resources
● No runtime licensing fees or additional royalties
● A trusted company with over 9 years experience developing Internet components

In addition, the SocketTools Secure Visual Edition offers:

● Support for the standard SSL and TLS security protocols with 128-bit encryption
● Enable security features with just a few lines of code
● Support for both implicit and explicit SSL and TLS connections
● Create both secure client and server applications
● Support for client certificates when required by the remote host
● Support for using certificate files as well as using the Windows certificate store
● No dependencies on third party SSL libraries

SocketWrench Tutorial Page 32

For more information about SocketTools, visit the Catalyst website at www.
catalyst.com

SocketWrench Tutorial Page 33

http://www.catalyst.com/products/sockettools/
http://www.catalyst.com/products/sockettools/

	SocketWrench Freeware Edition Tutorial
	General Overview
	Windows Sockets API
	Transmission Control Protocol
	User Datagram Protocol
	Hostnames
	Service Ports
	Sockets
	Client-Server Applications
	Blocking vs. Non-Blocking Sockets

	SocketWrench Freeware Edition
	System Requirements
	SocketWrench Echo Client
	Essential Properties
	Establishing a Connection
	Sending and Receiving Data
	Closing the Connection

	SocketWrench Echo Server
	Initializing the Server
	Listening for Connections
	Closing the Connection

	Putting It All Together

	SocketWrench Secure Edition
	SocketTools Visual Edition

